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Abstract

Improvements in semiconductor technology and computer architecture have led to the

proliferation of multicore and many-core processors. In order to improve the performance

of multithreaded applications on multicore processors, hardware vendors have recently in-

cluded support for transactional execution in the form of Hardware Transactional Memory

(HTM) and Hardware Lock Elision (HLE). Under transactional execution, threads can

speculatively execute in parallel and rely on runtime hardware to detect memory conflicts

and rollback/replay execution if required. If an application does not encounter frequent

memory conflicts among threads, then transactional execution can result in better per-

formance, as compared to using mutex locks, due to the increased parallelism. Although

primarily intended to improve multithreaded software performance, the introduction of

hardware support for transactional execution presents exciting new avenues for addressing

crucial research problems in a wider range of software. This thesis presents two novel ap-

plications of transactional execution to address performance and correctness challenges in

software.

Most state-of-the-art processors implement relaxed memory consistency models in an

attempt to extract more program performance. Different processor vendors implement dif-

ferent memory consistency models with varying memory ordering guarantees. The discrep-

ancy among memory consistency models of different instruction set architectures (ISAs)

presents a correctness problem in a cross-ISA system emulation environment. It is possible

for the host system to re-order memory instructions in the guest application in a way that

violates the guest memory consistency model. In order to guarantee correct emulation,

a system emulator must insert special memory fence instructions as required. Transac-

tional execution ensures that memory instructions within concurrent transactions appear

to execute atomically and in isolation. Consequently, transactional semantics offers an
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alternative means of ordering instructions at a coarse-grained transaction level, and the

implementation of hardware support for transactional execution provides an alternative to

memory fences. This thesis tackles the correctness problem of memory consistency model

emulation in system emulators by leveraging transactional execution support.

Extracting sufficient parallelism from sequential applications is paramount to improve

their performance on multicore processors. Unfortunately, automatic parallelizing com-

pilers are ineffective on a large class of sequential applications with ambiguous memory

dependences. In the past, Thread-Level Speculation (TLS) has been proposed as a solu-

tion to speculatively parallelize sequential applications. TLS allows code segments from a

sequential application to speculatively execute in parallel, and relies on runtime hardware

support to detect memory conflicts and rollback/replay execution. No current processor

implements hardware support required for TLS, however, the transactional execution sup-

port available in recent processors provides some of the features required to implement

TLS. In this thesis, we propose software techniques to realize TLS by leveraging trans-

actional execution support available on multicore processors. We evaluate the proposed

TLS design and show that TLS improves the overall performance of a set of sequential

applications, which cannot be parallelized by traditional means, by up to 11% as compared

to their sequential versions.
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Chapter 1

Introduction

Computer technology has seen a tremendous improvement since the invention of the first

electric computer. Advances in semiconductor technology coupled with improvements in

computer architecture have resulted in powerful multicore and many-core processors since

the turn of the century. Multicore processors aim to extract more performance, while

consuming less power, compared to single core processors. In order to extract the power-

efficient performance promised by modern multicore processors, it is crucial to extract

sufficient parallelism from applications. Myriad programming and compiler tools have

been proposed in order to help developers deploy multithreaded applications capable of

harnessing the parallelism of modern multicore processors. Recently, multiple processor

vendors have introduced hardware support for speculative transactional execution ,in the

form of Hardware Transactional Memory (HTM) and Hardware Lock Elision (HLE), to

further promote the development of multithreaded programs.

Transactional execution can be used as an alternative to traditional mutex locks in

multithreaded programs. Transactional execution permits threads to speculatively execute

in parallel, and relies on runtime hardware support to detect memory conflicts and rollback

speculative execution if necessary. Therefore, transactional execution can extract more par-

allelism than traditional mutex locks when used in multithreaded applications which do

1
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not suffer from frequent memory conflicts among threads. Since its inception, transactional

execution has been incorporated into a variety of multithreaded applications. Although

intended to improve the performance of multithreaded programs, the advent of hardware

support for speculative transactional execution presents new avenues of research. In partic-

ular, transactional execution semantics can be used to tackle problems in a broader range

of software. This dissertation explores the application of hardware support of transactional

execution to address correctness and performance challenges in software.

Most modern multicore processors implement relaxed memory consistency models in

order to extract more performance. Consequently, current processors can re-order instruc-

tions in a concurrent application in a way that can produce results that are divergent from

what the programmer intends. Hence, processor vendors provide special memory fence in-

structions that can be used by the programmer to prohibit the hardware from re-ordering

instructions, and thereby guarantee correct execution of the program. Transactional ex-

ecution enforces an implicit ordering among instructions at a coarse-grained transaction

level by ensuring that memory operations within concurrent transactions appear to execute

atomically and in isolation. Therefore, prior works have proposed transactional execution

semantics as an alternative to memory fence instructions to enforce ordering of memory

instructions in relaxed memory consistency model processors. The implementation of hard-

ware support for transactional execution provides an alternate means to ensure correctness

in software. In this dissertation, we employ transactional execution to address an important

correctness challenge in cross-ISA system emulation software.

In order to take advantage of the processing power of multicore processors, it is crucial

for sequential applications to extract sufficient parallelism. However, automatic paralleliza-

tion of single-threaded applications with ambiguous data dependences remains a significant

challenge. Prior research has proposed Thread-Level Speculation (TLS) as a solution for

parallelizing sequential applications by relying on hardware support for speculative exe-

cution of threads. Although hardware support for TLS has not yet been widely adopted
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by the processor industry, recently implemented transactional execution support offers

features similar to those required by TLS. Therefore, in this dissertation we explore the

possibility of realizing TLS execution using HTM support that is available on existing

microprocessors.

1.1 Challenges Addressed in this Dissertation

This dissertation explores novel applications of hardware support for transactional execu-

tion to address both correctness challenges in parallel system software, and performance

challenges in sequential application software. We elaborate on the challenges addressed in

this dissertation below.

1.1.1 Enforcing Correctness in Cross-ISA Emulators1

System emulation, or system virtualization, is a key technology that is widely used in

today’s computers. Data centers reduce costs be employing virtualization in order to uti-

lize computational resources more efficiently. Virtualization also provides strong isolation

between different applications running on the same hardware, thereby resulting in better

security and reliability in the cloud. System emulation has numerous applications beyond

cloud computing as well. Emulation is widely used as a safe way to examine malware.

Emulation also facilitates execution migration of applications across different platforms

and devices.

Support for emulation across processors with different instruction set architectures

(ISA) can open up further opportunities in many different applications of system emu-

lation. Cross-ISA emulation can help data centers to consolidate workloads over a wider

range of processors. It can also enable new processor architectures to be deployed eas-

ily in data centers without any changes to existing applications. For example, x86-based

applications can take advantage of servers built with emerging low-power processors with

1This work is set to appear in ACM Transactions on Architecture and Code Optimization [47].
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different ISAs. Cross-ISA emulation also has potential applications beyond the data center.

It can facilitate the execution of incompatible applications on desktop and mobile phones,

as well as allow application execution to migrate between different devices seamlessly. For

example, it can allow applications developed for ARM mobile processors to run on x86

mobile processors (and vice-versa). Cross-ISA system emulation can enable wider adop-

tion of ubiquitous computing, which harnesses the cloud to run mobile applications, by

supporting virtual execution of mobile applications on cloud servers with different ISAs.

Recent advances in semiconductor technology have resulted in multicore and heteroge-

neous multicore processors that drive systems from servers to mobile phones. In response

to this trend developers are exploiting parallelism in applications. With parallel appli-

cations becoming more ubiquitous, cross-ISA virtualization of multithreaded programs is

crucial. Although a large body of research exists on system virtualization, relatively few

of the prior works address the challenges unique to multithreaded applications. One of

the key challenges of virtualizing multithreaded applications across ISAs is ensuring that

a program written for the guest system is executed correctly on the host system when the

memory consistency models of the two ISAs differ.

The memory consistency model of a processor defines how the results of memory ac-

cesses in a program will appear to the programmer. The most intuitive memory consistency

model is the sequential consistency (SC) model [37] which specifies that the memory op-

erations from a processor appear to execute atomically and in the order they are specified

in the program. Enforcing sequential consistency, however, prohibits a number of architec-

ture optimizations crucial to high performance. Therefore, most modern processors choose

to implement relaxed memory consistency models which are weaker than SC. However,

they provide special memory fence instructions as a means to enforce SC. Table 1.1 shows

the ordering constraints enforced in some modern processor architectures compiled from

previous studies [1, 49, 42]. Different architectures vary in the ordering constraints they
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Relaxation
W → R

order

W → W

order

R → RW

order

SC

x86-TSO ✓

SPARC-TSO ✓

SPARC-PSO ✓ ✓

SPARC-RMO ✓ ✓ ✓

POWER ✓ ✓ ✓

ARM ✓ ✓ ✓

Table 1.1: Relaxed memory consistency models of modern processors compared to SC. A
✓indicates the corresponding constraint is relaxed.

relax compared to SC. If the guest and host systems in a virtual environment have dif-

ferent memory consistency models, then it can lead to an incorrect execution of the guest

application [58]. An emulated execution is considered incorrect if the order of memory

operations that occurred during the actual execution on the host, could not have occurred

on the guest system. Specifically, if the guest system has a stronger memory consistency

model than the host system, it can result in the host machine reordering accesses in a way

that is illegal on the guest ISA (e.g x86 on POWER).

Existing cross-ISA system emulators [3, 41] circumvent this issue by executing mul-

tithreaded programs sequentially - by emulating a multicore guest system through time-

sharing using a single core on the host system. However, such emulators do not harness the

power of multicore processors since they are not parallel. Recently proposed parallel em-

ulators use multiple cores on the host system to emulate multicore guest systems [66, 16].

Consequently, they are much faster than sequential emulators. However, they only support

emulation of guest and host systems with the same ISA (e.g. x86 on x86), or a guest system

with a weaker memory consistency model than the host system (e.g. ARM on x86).
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In order to ensure correct emulation when the guest system has a stronger memory

consistency model than the host system, the ordering constraints of the guest memory

model must be enforced on the host system by the emulator. One possible solution to the

problem of memory consistency model emulation is runtime fence insertion in the trans-

lated host code. Transactional execution ensures that memory operations in concurrent

transactions appear to execute atomically and in isolation. Therefore, it ensures an implicit

ordering among instructions at a coarse-grained transaction level. The implicit ordering of

instructions enforced by transactional execution can be used as an alternative approach to

enforce an ordering among memory instructions in the translated host code. This disser-

tation explores the problem of supporting memory consistency model emulation in parallel

system emulators in detail. We discuss the issues involved in supporting memory consis-

tency model emulation, evaluate the tradeoffs between using the two alternate approaches,

and propose a novel solution to address the problem.

1.1.2 Improving Sequential Application Performance Through Specula-

tive Parallelization

Recent advances in semiconductor technology have resulted in powerful multicore and

many-core processors. One way for single-threaded applications to benefit from this trend

is to extract sufficient parallelism. Unfortunately, for a large class of applications with

ambiguous dependences, automatic parallelization remains a significant challenge for soft-

ware developers. Thread-Level Speculation (TLS) has been proposed as a solution to

automatically exploit parallelism from sequential applications; and this technique has been

studied extensively [23, 26, 2, 61, 43, 35, 21, 48, 59, 19, 12]. Under TLS, threads are spec-

ulatively executed in parallel. At runtime, data dependence violations are detected and

speculative execution can be rolled back if necessary. A parallelizing compiler can leverage

TLS support to speculatively parallelize sequential applications which contain ambiguous

memory dependences [69, 68, 62, 17, 34, 33, 39, 64, 44]. No current processor implements
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hardware support for TLS, however, transactional execution support implemented in the

form of Hardware Transactional Memory (HTM) [30, 55, 24, 27] in recent processors offers

features similar to that of TLS.

Fundamentally, both HTM and TLS require efficient mechanisms for memory conflict

detection and the rollback/replay when speculation fails. However, there are also signifi-

cant differences between HTM and TLS. In particular, previously proposed TLS work has

pointed out that ordered commit and synchronized inter-thread data communication are

key for speculative parallelization of sequential applications [53]:

Ordered Commit: When sequential programs are parallelized under TLS, code segments

from different parts of the program are speculatively executed concurrently. One way

to ensure the preservation of the sequential semantics intended by the programmer

is to force all the threads to commit in the same order as in the sequential execution.

For example, TLS allows a loop with potential inter-thread data dependences to

be parallelized by executing different iterations of the loop in separate threads. To

preserve the sequential semantics under TLS, we must ensure that these threads are

committed in the same order as in the sequential execution. Previously proposed

TLS hardware ensures such ordered commit, however HTM does not provide such a

guarantee.

Synchronized Inter-Thread Data Communication : While TLS provides an effi-

cient mechanism for handling infrequently occurring data dependences, frequent data

dependences are better handled through explicit inter-thread data communication.

Thus, prior TLS proposals have explored such hardware support for synchronizing

data between speculative threads [2, 26, 23, 43]. Unfortunately, existing HTM im-

plementations do not have provisions for data communication between speculative

threads. Data synchronization support is crucial to reduce frequent speculation fail-

ures in TLS.
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Given these key differences between the existing HTM support and the hardware sup-

port required for efficient implementation of TLS, it is not clear if TLS can be imple-

mented on existing multicore processors. Therefore, in this dissertation we aim to deter-

mine whether it is possible to realize TLS execution using HTM support that is available

on current microprocessors. Implementing TLS on current processors can improve the

performance of a large class of sequential applications with ambiguous data dependences.

1.2 Dissertation Contributions

This dissertation presents two novel applications of hardware support for transactional exe-

cution in state-of-the-art multicore processors. The thesis leverages transactional execution

to address crucial correctness and performance challenges in software:

1. We study the problem of supporting memory consistency model emulation in paral-

lel emulators and evaluate using transactions as an alternative solution to memory

fences. The tradeoffs involved in using memory fences and transactions in the Intel

Haswell processor are discussed and characterized. We implement the two approaches

on COREMU, a recently proposed parallel emulator, and highlight the implementa-

tion issues. A novel hybrid technique that minimizes overhead by switching between

using fences and transactions depending on the application characteristics is pro-

posed. The overhead of the two approaches and the hybrid technique is evaluated on

a set of parallel applications from the PARSEC and SPECOMP benchmark suites.

2. We implement TLS execution in the Intel Haswell microprocessor using hardware

support for transactional memory. We propose software mechanisms to: i) ensure

that speculative threads are committed in a predetermined order on current HTM,

and ii) enable efficient inter-thread data communication between speculative threads

on current HTM support. A novel dynamic tuning mechanism to prevent perfor-

mance degradation by automatically disabling TLS in applications which suffer from
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frequent speculation failures is proposed. The performance of TLS is evaluated using

a set of SPEC2006 applications that are not amenable to parallelization using ex-

isting parallelizing compilers. Our evaluation shows that TLS yields a performance

improvement of up to 11% compared to the sequential version.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows:

1. Chapter 2 describes the transactional execution support available on the Intel Haswell

architecture which we use for all the evaluation studies in this thesis.

2. Chapter 3 describes the correctness problem that arises due to a discrepancy between

the guest and the host system memory models in a cross-ISA emulation environ-

ment. It also discusses the tradeoffs between using memory fences and transactional

execution as two alternative solutions to this problem, and compares the overhead

of ordering instructions using memory fences and transactional execution on Intel

Haswell.

3. Chapter 4 outlines how memory fences and transactional execution support can be

incorporated into a parallel system emulator in order to support memory consis-

tency model emulation. The chapter discusses implementation issues, and presents

a detailed analysis of the two techniques, as well as our proposed hybrid emulation

technique.

4. Chapter 5 illustrates how transactional emulation support can be utilized in order

to realize TLS. We describe our software mechanism for implementing TLS, and

software optimizations to further improve the performance of TLS.

5. Chapter 6 presents a detailed evaluation of the performance of our proposed TLS

mechanism on a set of SPEC2006 applications which cannot be parallelized using
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traditional techniques.

6. Chapter 7 concludes this thesis, and presents recommendations for features in future

HTM implementations based on our experiences. The chapter also outlines possible

future directions of research in transactional memory and speculative parallelization.



Chapter 2

Transactional Execution Support

On The Intel Haswell Architecture

The idea of hardware transactional memory was first described over 20 years ago [30].

Although support for transactional memory has been introduced in specialized processors

such as IBM’s BlueGene/Q[29] and the discontinued Sun Rock processor [13], it has taken

more than 20 years for transactional execution support to be implemented in commodity

processors. With it’s new Transactional Synchronization Extensions (TSX) instruction

set, Intel recently introduced hardware support for transactional execution in the Haswell

architecture. Concurrently, transactional memory support has been introduced in other

commodity architectures, such as the IBM z/Architecture [32], and the IBM POWER [9].

In this chapter, we describe the hardware support for transactional execution offered on

the Intel Haswell architecture. All the experiments presented in this thesis leverage the Intel

TSX support. We describe the TSX instruction set in Haswell, and the features supported

by TSX. Since the HTM implementations in other architectures offer similar support for

store buffering, conflict detection, and execution rollback as the Intel TSX, we believe that

the work described in this dissertation will be valid on other HTM implementations as well.

11
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2.1 Intel Transactional Synchronization Extensions

The Intel TSX instruction set provides support for transactional execution in two different

interfaces: Restricted Transactional Memory (RTM) and Hardware Lock Elision (HLE).

Both these extensions rely on the same underlying architecture support for transactional

execution. However, there are differences in the instruction set interface and the features

supported by them. We discuss both these extensions in this section.

2.1.1 Restricted Transactional Memory

Intel’s RTM instruction set provides instructions to enable programmers to transactionalize

the execution of multithreaded software. The instructions provided by RTM are simple to

use. A transaction is initiated using the XBEGIN instruction. Any memory read or write

made after the XBEGIN instruction is buffered, and the changed addresses are tracked

using per-thread read and write sets. The memory addresses are tracked at the cache

line granularity. Memory changes made inside a transaction are committed at the end

of the transaction using the XEND instruction. Data written within a transaction is not

visible to the other threads until the transaction is committed using the XEND instruction.

The XBEGIN and XEND are valid instructions within a transaction, thereby permitting

transaction nesting in TSX.

There are several conditions under which a transaction can abort. On an abort, all

the changes made within the transaction are discarded and the execution jumps to a

fallback handler specified as an argument to the XBEGIN instruction. The reason for the

transaction abort is recorded in the EAX register using an 8-bit flag. There are five flags

defined in the architecture:

XABORT : An XABORT instruction aborted the transaction. An XABORT instruction

can be used to explicitly abort a transaction. Execution jumps to the fallback handler

specified in the XBEGIN instruction when XABORT is executed. XABORT takes
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an 8-bit failure code which is accessible by the fallback handler.

Conflict : The transaction aborted since an address modified within the transaction was

read or written by another transaction.

Overflow : The transaction aborted since the number of memory addresses tracked in

the read/write buffer exceeded the hardware limit.

Debug : The transaction aborted since a debug breakpoint was encountered.

Nested : The transaction aborted since a nested transaction failed.

There are a few instructions that are restrictedwithin a transaction in the Intel RTM. If

a restricted operation is attempted then the transaction is aborted and the fallback handler

is invoked. Fundamentally, any instruction that changes the processor state in a way that

cannot be trivially reverted causes a transaction abort. The restricted instructions include

the multimedia extensions (MMX), streaming SIMD extensions (SSE), and the advanced

vector extensions (AVX) instruction sets. Instructions that halt the processor’s execution,

change the privilege level of the execution, and cause exceptions are not permitted within a

transaction. Despite these restrictions, the features offered by RTM are sufficient for most

multithreaded application software.

2.1.2 Hardware Lock Elision

Intel TSX provides HLE as a solution to improve the performance of legacy lock-based

multithreaded programs. HLE is based on prior research which proposed speculative lock

elision [54] as a way to avoid a thread acquiring a lock before entering a critical section in

a program if acquiring the mutex lock is not necessary at runtime. HLE is implemented in

the form of two backward-compatible instruction prefixes: XACQUIRE and XRELEASE.

These prefixes accompany atomic memory operations, such as compare-and-swap, that are

typically used to implement mutex locks. The XACQUIRE prefix accompanies an atomic
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memory operation that acquires a mutex lock in the program, while the XRELEASE prefix

accompanies an atomic memory operation that releases the mutex lock. If the processor

supports the XACQUIRE and XRELEASE prefixes, then HLE is invoked and the execution

is transactionalized. However, if the processor does not support transactional execution,

then these prefixes are simply ignored and the critical sections are executed normally.

When an XACQUIRE-prefixed atomic store is executed, the processor implicitly starts

a transaction at the lock boundary and elides the actual store, treating it as a transac-

tional read instead (i.e., placing the cache line address of the lock variable in the read

set). Internally, however, the processor maintains an illusion that the lock was acquired.

Therefore, if the transaction reads the lock, it sees the value stored locally. Upon execut-

ing an XRELEASE-prefixed atomic store, the transaction commits and the lock is restored

back to its original state. If an HLE transaction aborts, the XACQUIRE-prefixed store is

re-executed non-transactionally. Such a non-transactional store conflicts with every con-

current HLE transaction eliding the same lock, since every such transaction is guaranteed

to have the lock variable’s cache line in its read set. This aborts all the concurrent HLE

transactions which are then re-executed non-speculatively. An HLE transaction can abort

due to the same reasons as an RTM transaction mentioned in Section 2.1.1. In all these

cases, the HLE transaction is re-executed non-speculatively. Therefore, an HLE transaction

can abort at most once before re-executing non-speculatively.

Both HLE and RTM rely on the same underlying hardware support to detect conflicts,

track memory addresses, and rollback/replay execution. However, there are two major

differences between RTM and HLE transactions.

1. In the case of an HLE transaction failure, the reason for the transaction abort is not

visible to the programmer as in the case of an RTM transaction failure.

2. When using RTM, the programmer must ensure forward progress of the program by

providing a fallback handler code which is executed in case of a transaction failure.

The fallback handler can point back to the transactional code segment. However,
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doing so does not guarantee the forward progress of the program. In the case of

an HLE transaction, no fallback handler is required since the same code segment is

automatically re-executed non-speculatively. Therefore, forward progress is implicitly

guaranteed by the hardware.



Chapter 3

Correctness Challenges In System

Emulation Across Different

Architectures

System emulation, or system virtualization, of applications across processors with different

instruction set architectures (ISAs) has many potential uses. System emulation is widely

used in data centers for workload consolidation. Emulation also has applications in a

wide range of areas such as malware analysis, application migration across platforms and

devices, ubiquitous computing, and cross-platform software development. With parallel

applications becoming more ubiquitous, cross-ISA virtualization of multithreaded programs

is crucial. One of the key challenges of virtualizing multithreaded applications across ISAs

is ensuring that a program written for the guest system is executed correctly on the host

system when the memory consistency models of the two ISAs differ [58]. An emulated

execution is incorrect if the order of memory operations that occurred during the actual

execution on the host, could not have occurred on the guest system. Existing cross-

ISA system emulators [3, 41] circumvent this issue by emulating a multicore guest system

16
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through time-sharing using a single core on the host system. Recently proposed parallel

emulators are much faster since they use multiple cores on the host system to emulate

multicore guest systems [66, 16]. However, they only support emulation of guest and

host systems with the same ISA, or a guest system with a weaker memory consistency

model than the host system. This chapter investigates the problem of supporting memory

consistency model emulation in parallel emulators in greater detail.

In this chapter we begin by elaborating on the need for memory consistency model

emulation using a motivating example. We then discuss two solutions to support mem-

ory consistency model emulation in parallel emulators: (i) using memory fences, and (ii)

using transactional execution support. We then discuss the tradeoffs involved in using

memory fences and transactions for memory consistency model emulation by characteriz-

ing the overhead of the two approaches on a recent processor. Our characterization shows

that transactional emulation is a viable alternative to using memory fences for memory

consistency model emulation. Moreover, the results show that a hybrid technique that

intelligently employs both memory fences and transactions depending on the application

characteristics is likely to yield the best results.

In the next chapter we propose our novel hybrid scheme, and present detailed analysis

and results.

3.1 A Motivating Example

Consider the pseudocode shown in Figure 3.1 involving two threads (Thread 0 and Thread

1) and two shared variables (x and y). Thread 0 reads the value of x into a local variable

r1, and writes to y, while Thread 1 reads the value of y into a local variable r2, and

writes to x. All the variables have an initial value of 0. Assume that the program is

executed on an emulated x86 machine running on a POWER host system. Note that the

x86 and POWER memory consistency models differ (Table 1.1). Table 3.1 shows all the

possible values of r1 and r2 at the end of the execution of the program. It also indicates
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Figure 3.1: Pseudocode of an x86 guest application emulated on a POWER host system.
All variables have an initial value of 0.

Result x86-TSO POWER

r1 = 0, r2 = 0 ✓ ✓

r1 = 0, r2 = 1 ✓ ✓

r1 = 1, r2 = 0 ✓ ✓

r1 = 1, r2 = 1 ✗ ✓

Table 3.1: Effect of the memory consistency model on the result of Figure 3.1

the outcomes that are valid under the x86 and the POWER memory consistency models.

Under the x86 model, the final outcome of r1 = 1 and r2 = 1 is illegal since the outcome

requires the stores to x and y to be reordered before the loads to r1 and r2 in both the

threads, which is not possible since the x86 model ensures that stores are not reordered

with preceding loads (R→W order is not relaxed). However, all the possible outcomes are

valid on POWER since the memory consistency model does not guarantee any ordering

among the memory accesses. Hence, the virtualized x86 system can observe an illegal result

(r1 = 1 and r2 = 1). Therefore, in a cross-ISA virtualized environment, if the guest system

has a stronger memory consistency model than the host system, it can lead to an incorrect

execution. However, if the guest system has a weaker memory consistency model than the

host system (e.g. POWER on x86), then the execution is guaranteed to be correct.
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(a) using fences (b) using transactions

Figure 3.2: Correct x86 emulation on the POWER host system.

(a) (b)

Figure 3.3: A correct execution of translated POWER host code (a) without the need for
memory fences, (b) without any transaction aborts.

3.2 Memory Fences

In order to ensure correct emulation when the guest system has a stronger memory consis-

tency model than the host system, an emulator must insert memory fences in the translated

host code at runtime. For the example shown in Figure 3.1, a memory fence must be in-

serted between the load to r1 (r2) and the store to y (x) in the translated POWER host

code by the emulator. The memory fence ensures that the load and store in a thread do

not get reordered. Figure 3.2(a) shows the pseudocode of the correct translated host code.

Finding a correct and efficient placement of memory fences for a program is a challenging

task [8, 36, 20, 18]. Inserting fences conservatively results in redundant fences and degrades

the performance of the program, while using too few fences can cause incorrect emulation.
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Even if the number of fences inserted, and their placement, is optimal, previous studies show

that a large fraction of the inserted memory fences are in fact unnecessary at runtime [65,

38]. Figure 3.3(a) shows an execution of the POWER host code translated using fences

from Figure 3.2(a). Here Thread 0 completes its accesses, and its effects are visible to

Thread 1, before Thread 1 executes its own accesses. In this execution, the final result is

legal on the x86 guest even without any fences inserted in the translated code, since, even

if the accesses made by both threads are reordered on the POWER host system it will not

lead to a consistency violation.

3.3 Transactional Execution

Transactional execution support implemented in recent processors provides an alternative

method of ensuring correct emulation of a guest system on a host system with a weaker

memory consistency model without the use of memory fences. HTM or HLE can be used to

group the accesses made by the translated host program into coarse-grained transactions.

Hardware support ensures that all memory accesses within a transaction appear to execute

atomically and in isolation. It also guarantees that all the transactions executed by the

same thread are sequentially ordered. Therefore, transactional emulation guarantees se-

quential consistency at the coarse-grained transaction level. Consequently, all the memory

accesses made by the guest application on the host system are also sequentially consistent.

Enforcing sequential consistency on the host machine ensures that the emulated execution

is guaranteed to be correct on any guest memory consistency model. Note that the granu-

larity of the transactions does not affect correctness although it can impact performance,

and that the accesses within a transaction can be reordered while still appearing to conform

to sequential consistency.

Although transactional emulation enforces a stricter constraint than necessary, it can

outperform emulation using memory fences under certain conditions. Unlike fences, which

incur a fixed cost on every execution, the cost of a transaction varies depending on the
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abort rate. If there are no conflicts between the threads during execution, then all the

transactions will commit without any aborts. Figure 3.3(b) shows a conflict-free execu-

tion of the POWER host code translated using transactions from Figure 3.2(b). In this

execution, Thread 0 commits its transaction before Thread 1 begins executing its own

transaction. Therefore, there is no conflict between the transactions and both commit

without any aborts. In this execution, the accesses within a transaction can be reordered

on the POWER host and the execution would still be correct. The transactional version of

the translated code can outperform the fence version since it does not incur the overhead

of executing fence instructions.

Transactional emulation can also result in poor performance under certain conditions.

Small transactions cannot effectively amortize the overhead of starting and ending a trans-

action. Thus, they can result in poor performance. However, increasing the transaction

size beyond a certain limit leads to diminishing returns. Large transactions can result in

conflicts among memory accesses that are well separated in time and cannot lead to con-

sistency violations in the guest application. Such false conflicts can increase the abort rate

of the transactions, thereby resulting in poor performance.

3.4 Overhead Characterization

In this section we characterize the overhead and tradeoffs between using memory fence

instructions and transactions on a recent processor. Our test system is a 4-core, 4-thread

x86 Haswell processor with HTM and HLE support. The features of the processor and the

transactional execution support are described in Chapter 2. Our evaluation does not char-

acterize the hardware parameters of the transactional execution support implemented in

Haswell since this has already been done by previous work [56]. We use HLE to implement

our transactions (lock elided critical sections). We begin by comparing the overhead of

memory fences and transactional execution in the absence of aborts using a simple single

threaded micro-benchmark. We then evaluate both the correctness and the performance
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Figure 3.4: Execution times of the fence and transactional versions of a sequential micro-
benchmark normalized to that of a no-fence and no-transaction baseline across different
transaction sizes.

tradeoffs of memory fences and transactional execution using a a set of concurrent, lock-free

algorithms.

Overhead: Fences vs. Transactions

We use a single-threaded micro-benchmark to compare the overhead of memory fences

and conflict-free transactional execution on Haswell. The micro-benchmark consists of a

single loop that iterates 100 million times. Each iteration of the loop performs a store

to a memory location, followed by a load from a different memory location. Therefore,

the store and load in this micro-benchmark might be executed out of order on x86. We

design two versions of the micro-benchmark where this re-ordering is prevented. In the

fence version we insert a fence between the store and the load, while the transactional

version executes each iteration of the loop within a transaction. Note that since the micro-

benchmark is sequential, there are no aborts due to memory conflicts in the transactional

version. Since the loop accesses only a few cache lines, the transactional version does not

experience any aborts due to buffer overflows either. We vary the size of each transaction

in the transactional version by varying the number of loop iterations executed within each
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transaction, while keeping the total number of loop iterations constant.

Figure 3.4 shows the execution time of the fence and the transactional versions of the

micro-benchmark normalized to the baseline which does not enforce any ordering. The data

is shown for various transaction sizes. Each iteration of the loop contains 6 instructions and

we vary the number of iterations within a transaction in steps of 10. The results show that

the overhead of memory fences on x86 is considerably high. The overhead of transactional

execution, on the other hand, varies depending on the transaction size. When the transac-

tion size is small, the overhead of transactional execution is considerable. However, even at

a small transaction size the overhead of using memory fences is much higher. As the trans-

action size increases, the overhead of transactional execution is amortized and performance

improves. Once a large enough transaction size is reached, the overhead of transactional

execution is negligible and the performance is comparable to sequential execution. Increas-

ing the transaction size beyond this optimal size does not lead to any performance benefit.

These results demonstrate that memory fences are expensive instructions on x86. They

also highlight that using transactional execution to enforce memory ordering, instead of

memory fences, can lead to substantial performance benefits if the abort rate is low and

the transactional overhead is amortized.

Concurrent Micro-Benchmark Results

In order to evaluate both correctness and the performance tradeoffs, we use a set of concur-

rent, lock-free algorithms which are written assuming SC. Thus, these micro-benchmarks

require memory fences for correct execution on x86 machines. All these algorithms enforce

mutual exclusion among threads in a multi-threaded program, using only shared memory

variables for communication. Each algorithm describes an entry region, which is executed

by a thread prior to entering the critical section, and an exit region, which is executed by

a thread once it exits the critical section. We briefly describe the kernels below.

• Peterson’s algorithm: A well known algorithm [52] for enforcing mutual exclusion
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in a multi-threaded program. The algorithm requires 1 fence in the entry region code

for correct execution on the x86 ISA.

• Big-Reader lock algorithm (BR-lock): A reader-writer lock implementation [7]

originally proposed and used in the Linux kernel. The algorithm requires 2 fences,

both in the entry region code, for correct execution on the x86 ISA.

• Byte-lock algorithm: Another reader-writer lock implementation proposed in [14].

The algorithm requires 2 fences, both in the entry region code, for correct execution

on the x86 ISA.

• Dekker’s algorithm: A well known algorithm [15] for enforcing mutual exclusion

among 2 threads. It requires 2 fences in the entry region code for correct execution

on the x86 ISA.

Each kernel is a simple program where multiple threads compete simultaneously to

increment a shared variable using a mutex lock implementation listed above. Each thread

increments the shared variable a fixed number of times in a loop. One iteration of the

main loop involves executing the entry region code, incrementing the shared variable, and

executing the exit region code. The threads do not wait between successive increments

and therefore, these programs have high contention. We check for correctness by testing

the value of the shared variable at the end of program execution to confirm that there

were no violations of mutual exclusion. Two versions are implemented for each kernel: a

fence version that uses memory fences, and a transactional version (with no fences). In

the transactional version of the program, each iteration of the main loop is performed as

a single transaction by a thread. We vary the size of a transaction by varying the number

of iterations executed within a transaction, while keeping the total number of iterations

constant. The number of iterations is varied by unrolling the main loop as many times

within each transaction. Note that the entry and exit region codes are executed as many

times as the number of increments of the shared variable in each transaction. Although
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the kernels are not representative of real-world applications, they are useful in order to

simulate the conditions under which transactional execution can outperform fences on a

real machine.

Effect of transaction size: Figure 3.5 (a, c, e, g) shows the execution time of the

transactional version of each program normalized to the fence version, across different trans-

action sizes. The data is shown for 2, 3, and 4 threads. Only two thread results are shown

for Dekker’s algorithm since it cannot be implemented for more than 2 threads. We choose

the fence version as the baseline in order to compare the relative performance of memory

fences and transactional execution. Since the micro-benchmarks encounter a livelock in

the absence of memory fences, we do not choose micro-benchmarks without fences as the

baseline. For all the programs, as the transaction size increases, the performance improves

until an optimal size and then begins to drop. Larger transactions amortize the overhead

of starting and ending a transaction thereby resulting in better performance. However,

very large transactions also increase the possibility of conflicts between the threads, which

in turn increases the abort rate of the transactions. A large transaction can also fail if the

number of unique cache lines accessed within the transaction exceeds a hardware specific

maximum read/write size [56]. However, this phenomenon is not observed in the evaluated

kernels since each of them accesses just a few unique cache lines within a transaction. Pe-

terson’s, BR-lock, Byte-lock and Dekker’s kernels access 3, 3, 2 and 3 unique cache lines

within a transaction, respectively. Therefore, the transactions in these kernels abort only

due to data conflicts resulting from the increase in the number of instructions (loads/s-

tores) per transaction. Some of the drop in the performance at very large transaction sizes

is also due to the aggressive loop unrolling necessary to increase the transaction size. The 2

thread results show that the transactional version, even with a suboptimal transaction size,

is faster than the fence version. The execution time of the optimal transactional version of

Dekker’s, Peterson’s, BR-lock, and Byte-lock, with 2 threads, is 0.05, 0.17, 0.88, and 0.83

times the execution time of the fence version, respectively.
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(a) Peterson’s algorithm with high contention (b) Peterson’s algorithm with no contention

(c) BR-lock algorithm with high contention (d) BR-lock algorithm with no contention

(e) Byte-lock algorithm with high contention (f) Byte-lock algorithm with no contention

(g) Dekker’s algorithm with high contention (h) Dekker’s algorithm with no contention

Figure 3.5: Execution time of the kernels using transactions normalized to execution time
using memory fences under low and high contention for different transaction sizes.

Effect of conflict rate: All these programs have a high conflict rate between the

threads, and as we increase the number of threads it further increases the possibility of a
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conflict. A high conflict rate increases the abort rate of the transactions, thereby leading to

poor performance. Figure 3.5 (a, c, e, g), shows that the performance of the transactional

version drops significantly compared to the fence version for 3 and 4 threads. The execution

time of the optimal transactional version of Peterson’s, BR-lock, and Byte-lock, with 4

threads, is 1.12, 1.45, and 1.05 times the execution time of the fence version, respectively.

In order to see the performance of transactional execution when there are no conflicts, we

modified the kernels (both the fence and the transaction versions) such that each thread

operates on a private lock and increments a private variable. Since the transaction support

on Haswell tracks dependencies at the cache block level, false sharing among threads can

also result in conflicts. Therefore, we take care to place all the private locks and variables

on different cache blocks so as to eliminate any false sharing. Figure 3.5 (b, d, f, h)

summarizes the results for all the kernels with 2, 3 and 4 threads. The results show that

the performance of the transactional version gets better as the transaction size increases.

However, under no contention, there is no drop in the performance of the transactional

version at large transaction sizes. The dip in performance observed in the kernels at very

large transaction sizes is due to the aggressive loop unrolling required to generate large

transactions. Moreover, the performance does not vary with the number of threads when

there is no contention. The execution time of the optimal transactional version of Dekker’s,

Peterson’s, BR-lock, and Byte-lock, with 2 threads, is 0.2, 0.2, 0.88, and 0.85 times the

execution time of the fence version, respectively. The corresponding numbers with 4 threads

for Peterson’s, BR-lock, and Byte-lock are 0.2, 0.86, and 0.82, respectively. Even as the

number of threads increases, the transactional version is faster than the fence version.

These results show that transactional execution is a viable alternative to using fences in

order to emulate a stronger guest memory consistency model on a host with a weaker mem-

ory consistency model. If the transaction sizes are large enough to amortize the transaction

overhead, and the conflict rate among the threads is low, then transactions can outperform

fences. However, if the transactions are too small, or if the program has a high conflict
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rate, then emulation using memory fences can result in better performance. Therefore,

a hybrid technique that can intelligently employ transactions or memory fences for emu-

lation depending on the application characteristics will likely yield the best performance.

These characterization results lead us to propose a novel hybrid memory consistency model

emulation technique that uses both memory fences and transactions in Chapter 4.



Chapter 4

Leveraging Transactional

Execution For Memory

Consistency Model Emulation

Chapter 3 described the problem of memory consistency model emulation support in par-

allel emulators in detail, and proposed transactional emulation as an alternative to run-

time fence insertion as a solution to the problem. The characterization in Chapter 3 also

demonstrated the conditions under which transactional emulation is a viable alternative to

memory fence insertion.

This chapter delves into the issues involved in incorporating the two approaches in order

to support memory consistency model emulation on a parallel system emulator. Based on

the characterization results in Chapter 3, we propose a novel hybrid emulation technique

that uses both fences and transactions, depending on the characteristics of the emulated

application, in order to minimize the overhead . The three approaches are evaluated

on COREMU, a recently proposed parallel emulator, using a set of real world parallel

applications from the PARSEC and the SPECOMP benchmark suites, and a detailed

29
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analysis of the results is presented.

4.1 System Emulation Using Dynamic Binary Translation

System emulators commonly use dynamic binary translation to convert guest assembly

instructions to host instructions. The guest code is translated on-the-fly, one basic block

at a time. Once a basic block has been translated, it is executed on the host system and the

emulator then begins translating the subsequent basic block. Emulators use a translation

cache to store recently translated translation blocks. When translating a guest basic block,

the emulator first searches for a corresponding translation block in the translation cache.

On a cache miss, the guest block is translated and inserted into the translation cache before

execution. Emulators also link translation blocks that are frequently executed in succession,

thereby forming traces. Traces allow execution to directly jump from one translation block

to the next without having to switch from the translation cache to the emulator code in

between, thereby speeding up emulation.

4.2 Emulation Using Memory Fences

Automatic insertion of fence instructions in parallel programs to eliminate memory con-

sistency violations is a well known problem. Prior works propose compiler techniques that

automatically insert fences, or tools that provide the programmer with information about

possible memory consistency violation bugs in the program [8, 36, 20, 18]. These tech-

niques rely on static or dynamic program analysis, memory model descriptions or program

inputs. Unfortunately, such high level information is inaccessible to a system emulator at

translation time. Moreover, these techniques have a high cost in terms of computation time

and therefore are not suitable for integration in a system emulator where dynamic binary

translation must be fast. During binary translation the emulator does not have access to

information that can help decide whether an access to a memory address is to a private
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or a shared variable. It also does not have information about the semantics of the guest

application that is being translated. Therefore, the emulator must be conservative and

insert a memory fence after every guest application memory operation in order to ensure

correctness [58]. Depending on the number of memory operations in an application, this

can lead to a considerable slowdown.

Fences must be selectively inserted only to bridge the gap between the guest and the

host memory consistency models. Therefore, certain optimizations can be used to reduce

the number of memory fences inserted depending on the guest and the host system. For

example, if the guest system is an x86 machine emulated on a POWER host system, then

the emulator needs to enforce only R→R, R→W and W→W order on the host system

(Table 1.1). Therefore, the emulator must insert a fence after every read operation. A

fence is required only between two write operations. While inserting fences only after a

specific type (read/write) of memory access can be easily implemented in an emulator,

inserting fences only between specific types of memory accesses is harder. For example, it

might not be possible to insert a fence between the last write in a translation block and

the first write in the successive block. This is because there might be multiple translation

blocks that could potentially be executed after a given translation block. Therefore, the

last write in a translation block can be followed by a read or a write in a successive

block. Moreover, translation blocks that are executed successively might be translated at

different times depending on when they are inserted into the translation cache and hence,

it might not be possible to infer the first memory operation in a successive translation

block at translation time. Therefore, in order to guarantee correctness the emulator must

conservatively insert a fence at the end of a translation block if the last memory access is

a write, thus negating most of the performance gain due to the optimization. In practice,

we find that using simple optimizations such as inserting a fence only after a specific type

of memory operation, is just as effective.
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4.3 Emulation Using Transactions

An emulator can also use transactions for memory consistency model emulation. The guest

code can be partitioned into chunks and executed as transactions on the host system. The

hardware will detect any conflicts among the transactions that are executed simultaneously

and re-execute them. Since the emulator cannot be certain if a memory access is to a

private or a shared variable, it must enclose every memory access in the guest application

within a transaction. Therefore, emulation using transactions is equally as conservative as

emulation using fence instructions.

The simplest way to form transactions is at the translation block level. However,

translation blocks are typically very small and contain only a few instructions. Therefore,

executing each translation block as a separate transaction can incur a significant overhead.

Executing entire traces as transactions can greatly reduce this overhead since traces typi-

cally contain tens of instructions. However, the transaction length is limited by the trace

length, which can vary depending on the application.

Figure 4.1(a) illustrates how the guest code can be partitioned into transactions at

the translation block boundaries. The emulator inserts Tx begin and Tx end instructions

around each translation block at translation time. If the emulator uses HLE to implement

the transactions then it must insert lock-elided lock and unlock instructions instead. A

simple approach is to begin every translation block with a {Tx end, Tx begin} prologue

that ends the previous block’s transaction and begins the next one. Tx begin and Tx end

instructions must be inserted when execution jumps to, and from, the translation cache in

order to form complete transactions. Note that transactional execution ensures that there

is an implicit fence between the translation blocks.

Forming transactions at the trace level involves a very small change. The emulator

inserts Tx begin and Tx end instructions only when execution jumps to, and from, the

translation cache but not around every translation block, as shown in Figure 4.1(b). Trans-

actions must be started at every entry point, and terminated at every exit point, to the



33

(a) Forming transactions at the translation block

level

(b) Forming transactions at the trace level

Figure 4.1: Forming transactions at the translation block and trace level in an emulator.

translation cache. Although it might be beneficial to form transactions that are larger than

the trace size it is not be possible to do this in an emulator environment. All the instruc-

tions executed within a trace correspond to the translated guest application. However,

when the execution jumps out of the translation cache at the end of a trace, the executed

instructions correspond to the emulator code itself. Since only the translated guest code

must be executed inside a transaction, a transaction must be started and terminated at

the beginning and end of a trace, respectively. Thus, any optimization that increases the

trace length of an application will also increase the size of the transactions formed.

The emulator must generate code differently depending on the hardware support used

to implement the transactions. If the transactions are implemented using HLE, then the

emulator must start and end each transaction with lock-elided lock and unlock instructions.

HLE, which is currently available only on Intel Haswell processors, automatically ensures



34

(a) Guest application with conditional synchroniza-

tion emulated using transactions at the trace level.

flag1 and flag2 are set to 0 initially.

(b) Guest application with conditional synchro-

nization emulated using transactions at the trans-

lation block level. flag and x are set to 0 initially.

Figure 4.2: Forward progress issues in transactional emulation.

forward progress on an abort by re-executing the transactions as regular critical sections

guarded by atomic locks [31]. Note that the emulator must use the same global lock to guard

all the critical sections generated in the code. If HTM is used, then each transaction must

start and end with the hardware specific Tx begin and Tx end instructions. Some HTM

implementations, such as IBM z/Architecture, provide support to automatically ensure

forward progress of aborted transactions [32]. However, other implementations, such as

Intel Haswell and IBM POWER, require the programmer to ensure forward progress by

explicitly specifying fallback code which is executed on a transaction abort [31, 9]. In

such cases the emulator must generate the fallback code at run-time. The fallback code

can point to the original transaction, however this might lead to the program not making

any forward progress. Therefore, the emulator must be able to identify when there is no

forward progress being made by the program (based on a timeout period or by monitoring

the transaction abort rate), and re-translate the code using fences.

Forward progress issues can also arise if the guest application has conditional synchro-

nization. Figure 4.2(a) shows a guest application with conditional synchronization that has

been translated using transactions at the trace level. The variables flag1 and flag2 are

set to 0 initially. The transactions span multiple basic blocks as shown in the figure. Note
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that the original guest code might contain fence instructions for the example shown in Fig-

ure 4.2(a), however, the emulator eliminates all fence instructions during translation since

the code is emulated using transactions. For correct execution of the program, statement

S1 must complete before loop L0, and statement S0 before loop L1. The introduction of

transactions, however, requires that L0 and S0 execute atomically before S1 and L1, or vice

versa. Since the transactions shown in Figure 4.2(a) are not serializable, this either leads

to a live lock or a dead lock. Live locks are possible even when the translated code has

transactions at the translation block boundaries. Figure 4.2(b) shows an example guest

application that has been translated with transactions formed at the translation block

boundaries. Both transactions in Figure 4.2(b) span a single basic block as shown. In this

example, it is possible that the store to x by Thread 0 continuously aborts the transaction

in Thread 1, thereby leading to a live lock. Such forward progress issues are not unique

to transactional emulation, and are possible with any application that contains ill-formed

transactions as demonstrated by previous studies [5]. The emulator must handle such cases

by re-translating the code using fences as described previously. Prior papers which employ

transactional execution in a binary translation environment propose a similar solution for

detecting when a program is not making any forward progress [11].

The guest application may contain user-defined transactions and critical sections. Trans-

action support implemented in recent processors automatically handles nested transactions

by subsuming the inner transaction. One of the advantages of using transactions is that

the same approach can work on any host system, as long as it supports transactional exe-

cution, since it does not rely on fences. This makes it attractive for emulation where the

guest-host configurations can vary.
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4.4 Hybrid Emulation Using Memory Fences and Transac-

tions

As characterized in Chapter 3.4, the overhead of using memory fences and transactions

depends on the number of fences inserted at runtime, the conflict rate among threads

in the application being emulated, and the size of the transactions formed at runtime.

Therefore, a hybrid technique that uses both fences and transactions, and automatically

chooses the best approach based on these factors, is likely to provide the best performance.

Such a hybrid technique must estimate the overhead of emulation using transactions and

memory fences at runtime. We propose using hardware performance counters to measure

the execution time of the translated host code in order to compare the overhead of the

two techniques. By measuring the number of host cycles elapsed, the execution time

of both versions of the translated host code can be measured accurately. The emulator

profiles the overhead of using fences and transactions periodically, and then applies the

best policy for emulating the application. Both the policies are profiled for a fixed number

of trace executions. During the profiling phase of the fence policy the emulator measures

the execution time of the host code translated using memory fences. Once the overhead of

fence emulation has been measured, the overhead of transactional emulation is measured

similarly. The emulator then makes its decision and applies the best policy for emulation

until the next profiling phase.

The main overhead of dynamic profiling is due to translation cache invalidations. Before

beginning a profiling phase, the emulator has to invalidate previously translated code

and begin translation using the technique being profiled. The translation cache must be

invalidated again when the policy being profiled changes. Similarly, once both fence and

transaction profiling phases have been completed, the translation cache must be invalidated

in order to translate the guest code using the best technique (this can be avoided if the best

policy is the same as the policy that is profiled last). However, the overhead of translation
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cache invalidations is small since each translation block must be translated just once before

it is inserted into the translation cache again. The overhead of measuring execution time

using hardware performance counters is also negligible. Therefore, the overhead of the

dynamic profiling technique is low. The proposed hybrid scheme is simplistic and switches

between fence and transactional emulation at a coarse-grained level. A fine-grained hybrid

technique that switches between fence and transactional emulation at a per-trace or per-

translation block level might yield better performance. However, comparing the execution

times of fence and transactional emulation at a fine-grained granularity also requires fine-

grained book-keeping operations. The lack of light-weight hardware performance counters

makes the overhead of fine-grained book-keeping operations prohibitively large. The design

of an alternate light-weight fine-grained hybrid technique is challenging. A comprehensive

treatment of this subject is beyond the scope of this thesis.

4.5 Evaluation

We use COREMU [66], a recently proposed parallel emulator for our study. Since COREMU

supports only x86 hosts, we use a 4-core, 4-thread, Haswell architecture based, x86 Xeon

E3-1225 v3 processor with transaction support as our host system. The processor speed

is 3.2GHz and does not support simultaneous multithreading (SMT). Consequently, each

core runs a single thread. Each core has a 32KB private L1 data cache and a 256KB L2

unified cache. All the cores share an 8MB L3 cache. The line size of all the caches is 64

bytes.

No modern processor implements a memory model stronger than the x86 memory

model. Therefore, in order to simulate a guest system with a stronger memory model

we assume a hypothetical sequential consistency guest system with the x86 ISA. We form

guest applications for the sequential consistency guest system by taking existing x86 pro-

grams and removing all the fence instructions from them. We verify that the sequential

consistency guest applications produce incorrect results when emulated on the x86 host
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system using the unmodified COREMU emulator. We discuss our results in the context of

a real cross-ISA system in Section 4.5.4.

We use two sets of multithreaded guest applications to check for correctness and per-

formance, respectively. The kernels described in Chapter 3.4 are used to verify correctness.

We use eleven (entire set) applications from SPLASH-2 [67] and nine applications from

PARSEC [4] in order to evaluate the performance overhead of the two techniques. We

use the updated input sets from SPLASH-2x and PARSEC-3.0 for our evaluation. Since

raytrace is common to both SPLASH-2 and PARSEC we include it just once. We omit

bodytrack, ferret and vips from PARSEC due to difficulties encountered when running

them on COREMU.

We modified COREMU to enforce sequential consistency (the guest memory model) on

the host by automatically inserting memory fences after every store instruction in the guest

application. Although a memory fence is required only between a store and a load in order

to guarantee sequential consistency on an x86 system (to enforce the W→R constraint),

such an optimization does not benefit much (Section 4.2). In practice, we find that inserting

a fence after every store is a simple and effective solution. No fences are inserted after loads

since it is not required on an x86 host system. In order to get a rough estimate of the

overhead of fence emulation on a host system with a relaxed memory consistency model

(such as POWER), we assumed that the x86 host has a relaxed memory model, and

modified COREMU to insert a memory fence after every load and store instruction in the

guest application. We also modified COREMU to execute the guest code as transactions

using HLE support available on the host system. This simplifies our implementation since

we do not have to generate fallback code or handle forward progress issues that might

arise from using HTM support instead (Section 4.3). We implement transactional support

at both the translation block and the trace level in order to evaluate them. We handle

guest applications with conditional synchronization that can lead to a livelock or deadlock

when emulated using transactions by monitoring the transaction abort rate using hardware
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(a) 2 threads

(b) 4 threads

Figure 4.3: Execution time of the applications on the virtual machine using transactions
(trace level), and memory fences inserted assuming a relaxed host system, normalized to
execution time with fences inserted only after a store instruction.

performance counters and re-translating the guest application using memory fences if the

abort rate if very high. We do not encounter such behavior with the evaluated real-

world applications, and the kernels used to verify correctness, since they do not have such

conditional synchronization constructs.

4.5.1 Performance Comparison

Figure 4.3(a) compares the performance of emulation using memory fences and transac-

tions. The figure shows the execution times of the applications on the virtual machine,
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emulated with transactions formed at the trace boundaries, normalized to the execution

times when emulated by inserting memory fences only after a store instruction. The figure

also shows the execution times of the applications emulated using memory fences assuming

that the x86 host has a weak memory consistency model (by inserting a memory fence

after every store and load instruction), normalized to the same baseline. Therefore, in the

fence - relaxed host configuration, a memory fence is inserted after every memory operation

in the guest application, while in the baseline system a fence is inserted only after every

store instruction in the guest application. Figure 4.3(b) shows the same data for 4-thread

applications.

The transactional execution results demonstrate that there is a variation in the be-

havior of different applications. Transactional emulation is faster than the baseline for

2-thread applications such as radiosity (0.74), raytrace (0.97), water (0.77), radix

(0.81), blackscholes (0.9) and swaptions (0.9). However, the baseline fence emula-

tion is faster for barnes (1.08), fmm (3.35), ocean (1.29), lu (1.05), cholesky (4.06),

volrend(4.56), dedup (1.41), facesim(1.30), fluidanimate (1.11), freqmine (1.25),

streamcluster (1.19) and x264 (1.11). The trends are similar for most applications

when run with 4 threads. Transactional emulation and emulation using the baseline fence

configuration are comparable for fft (1.00) with 2 threads; however the baseline is faster

in the case of the 4-thread version. In the case of canneal (1.00), the baseline and trans-

actional emulation configurations are comparable for both 2 and 4 threads. These results

show that the best technique depends on the characteristics of the emulated application.

The fence - relaxed emulation results show that, as expected, the execution times of

most applications are much slower when a fence is inserted after every memory operation

in the application. Moreover, unlike transactional emulation, the fence - relaxed execution

times do not vary between the 2 and 4 thread applications; this is also expected since fence

emulation overhead depends mainly on the number of memory operations per thread,

rather than the number of threads in the application. The results show that transactional
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emulation is faster than fence - relaxed emulation for most of the applications in both the

2 and the 4 thread cases. Therefore, the fence - relaxed results suggest that transactional

emulation can be more beneficial than fence emulation across a wide range of applications

on a host system with a relaxed memory consistency model. We use the fence - relaxed

results solely to illustrate the potential benefits of transactional emulation on a relaxed

host system. Since inserting a fence after every memory operation is not required on an

x86 host system, and doing so can artificially inflate the overhead of fence emulation, we

do not include these results in the rest of the thesis. For the rest of this thesis, we refer to

the baseline fence emulation configuration as simply fence emulation.

Table 4.1 lists the characteristics of the transactions formed in each application. Note

that the transactions are formed at the trace boundaries. The table shows the average

number of guest instructions, guest memory accesses and guest stores per transaction

in the evaluated applications. It also shows the abort rate of the transactions for each

application when run with 2 threads.

Transactional emulation results in poor performance in barnes, fmm, ocean, cholesky,

volrend, dedup, facesim, fluidanimate and freqmine due to the high abort rate.

Transactions abort in these applications due to data conflicts. Apart from true data de-

pendency conflicts, false sharing in these applications also results in aborts since Haswell

tracks dependencies at the cache block level. Transactional emulation in fft and lu has

a high abort rate, but its performance is comparable to emulation using fences since the

overhead of fence emulation is also large due to the high number of stores per transaction

in these applications. In the case of streamcluster transactional emulation is slower

than fence emulation, even with a fairly low abort rate, since the fence overhead is very

low given the small number of stores per transaction.

Transactional emulation is faster than using fences in blackscholes and swaptions

since the abort rate in these applications is fairly low. Transactional emulation outperforms

emulation using fences in radiosity, water and radix because of two reasons. These
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Application
Inst. (LD + ST) ST Abort rate

per TX per TX per TX (%)

barnes 43.36 24.36 8.84 46.67

fmm 202.67 36.38 4.33 89.52

lu 8778.67 3445.00 984.33 99.52

ocean 185.81 66.04 0.65 90.41

radiosity 38.02 4.63 4.51 2.77

raytrace 17.45 6.82 0.55 1.67

water 69.28 27.66 7.24 11.38

fft 387.38 128.50 45.88 92.66

radix 82.68 13.71 4.94 22.73

cholesky 313.00 119.00 29.33 96.55

volrend 69.92 23.13 4.50 85.41

blackscholes 22.69 6.89 1.96 3.06

canneal 16.69 6.61 3.27 2.00

dedup 45.91 20.35 6.36 53.97

facesim 49.65 21.90 6.55 55.50

fluidanimate 32.92 11.15 1.76 25.99

freqmine 46.59 21.04 6.85 37.88

streamcluster 18.40 7.73 0.25 10.57

swaptions 26.87 10.30 2.66 24.71

x264 28.32 10.13 2.46 18.99

Table 4.1: Characteristics of the transactions formed during emulation using transactions.
LD stands for number of load instructions, ST stands for number of store instructions, and
TX stands for transaction.
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Figure 4.4: Execution time of the applications on the virtual machine with transactions
formed at the translation block boundaries normalized to the execution time with trans-
actions formed at trace boundaries.

programs have very low abort rates leading to a low overhead and, the number of stores per

transaction in these applications is also fairly large resulting in a high overhead when using

memory fences. Transactional emulation is only marginally faster in raytrace, although

it has a low abort rate, since the number of stores per transaction in the program is small

thereby resulting in a low overhead when emulating using fences. In the case of canneal,

the two approaches are comparable since the execution time of the emulated application is

dominated by the initial phase where the main thread reads the input data.

Figure 4.4 shows the effect of the transaction size on emulation. It shows the execution

time of the applications on the virtual machine when emulated with transactions formed

at the translation block boundaries normalized to execution time with transactions formed

at the trace boundaries. The results are shown for 2-thread applications. The results show

that emulation with transactions formed at translation block boundaries is significantly

slower with as much as 20x slowdown (water). This is because in most of the applications

translation blocks are just a few instructions in length, and transactions at the translation

block boundaries are not large enough to amortize the overhead of starting and ending a
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transaction. There is a marked difference between the SPLASH-2 and the PARSEC ap-

plications. In the PARSEC applications, the difference in the number of instructions per

trace and per translation block is not as large as in the SPLASH-2 applications. However,

transactional emulation at the translation block level is still slower than emulation at the

trace level in the PARSEC applications with as much as 1.89x slowdown (freqmine and

swaptions). Since emulation with transactions formed at the translation block bound-

aries results in poor performance, in the rest of this thesis we focus only on transactional

execution with transactions formed at the trace level.

4.5.2 Hybrid Emulation Using Fences and Transactions

Figure 4.5 shows the execution time of the applications on the virtual machine using

memory fences, transactions, and our hybrid technique, all normalized to the execution

time of the applications without any support. Although emulating an application without

any support can lead to an incorrect emulation, we choose it as the baseline to illustrate the

overhead of each emulation technique. The data is shown for both 2-thread and 4-thread

applications. The results show that the hybrid technique chooses the best approach for

all the applications. Most of the evaluated applications exhibit bipolar behavior with one

technique resulting in much better performance than the other. Therefore, the proposed

simple profiling technique is sufficient in order to choose the best policy. The profiling

overhead for the hybrid technique is less than 1% and does not result in a slowdown.

The average overhead for emulation using fences, transactions, and the hybrid technique,

compared to the incorrect baseline emulation, is 27.1%, 60.8%, and 20.8% for 2-thread

applications. The corresponding numbers for 4-thread applications are 32.3%, 128.4%,

and 26.3%, respectively. Memory consistency model emulation using the proposed hybrid

technique is 4.9% faster than emulation using fences and 24.9% faster than emulation

using transactions, on average, for 2-thread applications. The corresponding numbers for

4-thread applications are 4.5% and 44.7%, respectively.
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(a) 2 threads

(b) 4 threads

Figure 4.5: Execution time of the applications on the virtual machine using transactions
(trace level), memory fences, and hybrid techniques normalized to execution time without
any support (incorrect emulation).

4.5.3 Overhead of Memory Consistency Model Emulation

Figure 4.6 shows the execution time of the applications on the virtual machine, emulated

using the hybrid technique, normalized to the native execution time. The normalized time

is split to show the contribution of the overhead of memory consistency model emulation

to the total overhead of system virtualization. The data is shown for both 2- thread

and 4-thread applications. On average, the total virtualization overhead using the hybrid
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(a) 2 threads

(b) 4 threads

Figure 4.6: Execution time of the applications on the virtual machine using the hybrid
technique normalized to the native execution time. The normalized time is split to show
the contribution of the overhead of memory consistency model emulation to the total
virtualization overhead.

technique is 24.45x for 2-thread applications and 25.78x for 4-thread applications. The

results show that in most applications the overhead of memory consistency model emulation

is a small, but non-trivial fraction of the total overhead of system virtualization. On

average, memory consistency model emulation contributes 11.3% and 13.9% of the total

system virtualization overhead for 2-thread and 4-thread applications, respectively. The

overhead of memory consistency model emulation can be decreased by selectively applying
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the emulation technique to only shared variable accesses in the application. However, in

order to filter the accesses to private data, the emulator needs access to high level program

semantic information. Incorporating program semantic information in emulators, using

compiler or binary analysis, is left as future work.

4.5.4 Discussion

Our evaluation illustrates the validity of memory consistency model emulation using fences

and transactions, and highlights the performance tradeoffs between the two approaches.

It also shows that the hybrid technique proposed in this work can correctly choose the

approach with the lowest overhead. Thus, although our evaluation uses a guest-host pair

that differ only in their memory consistency models, our proposed technique and the per-

formance tradeoffs between fence and transaction emulation are valid on a real cross-ISA

system where both the instruction set and the memory consistency models of the guest-host

pair differ.

The overhead of transactions formed at the trace level depends mainly on the trans-

action abort rate since they can effectively hide the overhead of starting and ending a

transaction. Since the transaction abort rate is an application characteristic, we expect

the overhead of emulating an application using transactions to be similar to the results

shown in this thesis in a real cross-ISA system. The overhead of fence emulation, on the

other hand, depends on the number of memory operations, which is an application charac-

teristic, as well as the placement of the fences in the translated code, which depends on the

guest and host memory consistency models. Hence, the overhead of emulating an applica-

tion using fences might vary from the results shown in this thesis depending on the host

and guest ISA pair. Although the technique with the lowest overhead for an application

might change in a different guest-host ISA pair, the proposed hybrid technique would still

be able to correctly identify it.

The total overhead of system virtualization is likely to increase in a real cross-ISA
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system due to the increased instruction translation time. The overhead of memory consis-

tency model emulation in a real cross-ISA system can increase in cases where the hybrid

technique employs fence emulation, but it would be similar for applications where trans-

actional emulation is chosen by the hybrid technique. Thus, we expect the contribution

of the overhead of memory consistency model emulation to the total overhead of system

virtualization to be similar to the results shown in Figure 4.6 in a real cross-ISA system.

4.6 Related Work

Previous works have explored system virtualization of multithreaded applications. Se-

quential system emulators, which emulate multithreaded applications by time-sharing em-

ulated threads on a single physical core on the host system, have been proposed previ-

ously [3, 41, 6]. In such emulators the memory consistency model of the guest system is

inconsequential since only one thread is emulated at a time on the host system. Therefore,

sequential emulators can emulate any guest-host memory consistency model pair. How-

ever, they suffer in performance since they do not utilize the resources available on current

multicore systems. Parallel system emulators, which run multiple emulated threads si-

multaneously on multiple physical cores on the host system, greatly increase emulation

speed [66, 16]. But such emulators only support same-ISA guest-host pairs or support only

guest systems that have weaker memory consistency models than the host systems. The

techniques proposed in this thesis are orthogonal to these works. They can be applied to

existing parallel system emulators to extend them to support a wider range of guest-host

pairs.

Techniques for automatic placement of fences in parallel applications running on relaxed

memory systems have been explored in previous work. The delay set analysis algorithm

is used widely for inferring the placement of memory fences in parallel applications on re-

laxed memory systems [57]. Various compiler techniques and automated tools for inserting

fences based on the delay set algorithm have been proposed [8, 36, 20, 18]. However, such
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techniques are aimed at helping developers write concurrent programs for relaxed memory

consistency models, and rely on static or dynamic program analysis, memory consistency

model descriptions or program inputs. The limited availability of program semantic infor-

mation at runtime, and the high cost of these techniques makes them unsuitable for use in

emulators. The memory fence insertion techniques discussed in this thesis are simple, fast,

and low cost techniques suitable for runtime systems.

The idea of executing memory accesses as coarse-grained, sequentially consistent chunks

has been proposed as a solution for enforcing sequential consistency on modern processors

without sacrificing performance [10, 22, 25, 28]. These prior works focus on the problem

of enforcing sequential consistency on modern processors while our work focuses on mem-

ory consistency model emulation. We do not propose any hardware changes and instead

leverage existing hardware on processors.

Using transactional memory has been previously proposed as a solution for thread-safe

dynamic binary translation of multi-threaded applications [11]. The authors propose using

transactional memory to eliminate data races among metadata maintained by dynamic

binary translation tools in multithreaded applications. In contrast, our work proposes

using transactional execution as a solution for memory consistency model emulation.

4.7 Summary

In this work we focus on the problem of memory consistency model emulation in virtual

machines where the memory consistency models of the guest and the host systems differ.

We compare using memory fences and transactions in order to support memory consis-

tency model emulation. We discuss the tradeoffs involved in using memory fences and

transactions for correct emulation, characterize the overhead of using fences and transac-

tions on a recent processor, and show that transactions are a viable alternative to using

memory fences for correct emulation. We implement the two approaches on COREMU, a

recently proposed parallel emulator, and highlight the implementation issues. We propose
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a hybrid technique that switches between the two approaches depending on the applica-

tion characteristics in order to minimize the overhead. We evaluate the overhead of the

two approaches and our hybrid technique on a set of real-world parallel applications. The

results show that, on average, the proposed hybrid technique is 4.9% faster than emulation

using fences and 24.9% faster than emulation using transactions for 2-thread applications.

The corresponding numbers for 4-thread applications are 4.5% and 44.7%, respectively.



Chapter 5

Implementing Speculative

Parallelization Using Transactional

Execution

With multicore processors becoming ubiquitous, it is crucial for sequential applications to

extract sufficient parallelism in order to benefit from the trend. Although there has been

extensive research on automatic parallelization of sequential applications, they have been

effective mainly on certain classes of scientific applications. For a large class of sequential

applications with ambiguous memory dependences, automatic parallelization remains a sig-

nificant challenge. Prior research has proposed Thread-Level Speculation (TLS) as solution

to automatically parallelize sequential applications. Although TLS has been demonstrated

to show performance improvement in simulated environments, hardware support for TLS is

yet to be adopted by the processor industry. However, hardware support for transactional

execution introduced in recent multicore processors, in the form of Hardware Transactional

Memory (HTM), guarantees some of the features required to realize TLS.

Both HTM and TLS require efficient mechanisms for memory conflict detection and the

51
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rollback/replay when speculation fails. However, there are also significant differences be-

tween HTM and TLS that affect how sequential applications are speculatively parallelized.

When a sequential program is parallelized using TLS, code segments from different parts

of the program are speculatively executed in parallel. In order to preserve the sequential

semantics and maintain correctness, these parallel code segments must be completed in the

same order as in the sequential execution. Prior TLS works assume hardware support for

such ordered commit, however existing HTM implementations do not allow transactions

to commit in a pre-determined order. For efficient TLS performance it is crucial to reduce

the number of speculation failures. Therefore, previous works have explored hardware op-

timizations for TLS that provide the means to synchronize and forward values between

speculative threads [2, 26, 23, 43]. Unfortunately, existing HTM implementations do not

provide hardware support for data synchronization or data forwarding among transac-

tions. Existing HTM offerings also do not support other advanced hardware optimizations

assumed by many prior TLS proposals, such as word level conflict detection. Given these

key differences between the existing HTM support and the hardware support required for

efficient implementation of TLS, it is not clear if TLS can be implemented on existing

multicore processors. If successfully implemented on current processors, TLS can improve

the performance of a large class of existing and emerging sequential applications.

In this work we aim to study the implementation of TLS execution using HTM support

that is available on existing microprocessors. We begin this chapter by describing specula-

tive parallelization of an example sequential application using TLS. We then describe how

HTM support on the Haswell processor can be used to speculatively parallelize the same

sequential application. We conclude by describing software mechanisms to improve the

performance of our proposed TLS design. We present a detailed analysis and evaluation

of our proposed TLS design in Chapter 6.
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1 #define SIZE 10000

2 #define NUM_ITERATIONS 1000000

3 struct bucket *hash_table[SIZE];

4

5 ...

6 for (i = 0; i < NUM_ITERATIONS; i++) {

7 hash_table[rand() % SIZE]->field += ...;

8 ... = hash_table[rand() % SIZE]->field;

9 }

10 ...

Listing 5.1: A microbenchmark which updates and reads random entries in a hash

table. The microbenchmark is a good candidate for speculative parallelization.

5.1 Thread-Level Speculation

Consider the sample microbenchmark shown in Listing 5.1. Lines 6-9 show the main

loop of the microbenchmark which updates and reads elements in a hash table structure

hash table. Since the loop updates and reads a random element in hash table in each

iteration, it is possible that multiple iterations of the loop operate upon the same element.

Therefore, although most of the iterations of the loop can be executed in parallel, a tradi-

tional parallelizing compiler will not automatically parallelize the loop as it cannot prove

which iterations are independent at compile time. Therefore, this loop is a good candidate

for speculative parallelization.

Figure 5.1 shows a sample execution of the loop in Listing 5.1 using traditional TLS

hardware as described by previous works. The loop is speculatively parallelized using two

threads with the iterations being divided equally among them. Thread 0 executes the even

numbered iterations (0, 2, 4 ...), and Thread 1 executes the odd numbered iterations (1,

3, 5 ...). In the execution shown in Figure 5.1, iterations 0 and 1 both operate on the same
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Figure 5.1: Sample execution of the microbenchmark in Listing 5.1 under TLS hardware.

element in hash table and hence, there is a conflict between the two parallel threads. The

hardware detects this conflict and aborts Thread 1 since it is more speculative. Thread 1

re-executes iteration 1 after the abort and succeeds the second time. Meanwhile, Thread

0 executes iteration 2 in parallel, but has to wait until Thread 1 commits iteration 1

in order to maintain the original sequential ordering. The hardware support for ordered

transactions allows Thread 0 to wait before committing.

TLS allows potentially dependent code segments from a sequential application to exe-

cute concurrently. If there are no runtime dependences, the speculative execution is suc-

cessful thereby speeding up application execution. While TLS can still lead to an execution

speedup in the presence of occasional speculation failures, frequent speculation failures can

lead to poor performance. In fact, TLS performance can be worse than sequential perfor-

mance if the application suffers from very frequent speculation failures. Therefore, not all

sequential applications might be amenable to speculative parallelization.

5.2 Implementing Thread-Level Speculation Using Hardware

Transactional Memory

We use the Intel RTM support, described in Chapter 2, for implementing transactions in

this work. Listing 5.2 shows the microbenchmark in Listing 5.1 speculatively parallelized
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using HTM. xbegin, xend and xabort are transactional memory intrinsics provided by

the GCC compiler. thread function shows the function executed by each thread.

The total number of loop iterations is equally divided between the threads. In our

TLS implementation, each thread speculatively executes a block of iterations within each

transaction. Executing a block of iterations within a transaction, rather than a single

iteration, helps amortize the transaction overhead, as well as reduce false sharing between

the threads. We elaborate on the benefits of executing a block of iterations within each

transaction in more detail in Section 5.3.1. For the sake of clarity, the rest of this section

assumes that each thread executes a single iteration within a transaction.

The TLS version of the loop is shown in Listing 5.2. The loop iterates over the it-

erations assigned to each thread (line 16). Each iteration is executed within a transac-

tion. Since there is no hardware support for ordered transactions in Haswell, transac-

tions are ordered through software synchronization. The threads use the shared variable

next iter to commit to track the next iteration that must be committed in sequential

order. next iter to commit is initially set to 0. Before beginning the execution of its

current iteration, each thread checks to see if its iteration is the next that must be com-

mitted in sequential order (line 19). If it is not, then the thread starts speculative execu-

tion by beginning a new transaction using xbegin (line 24). xbegin returns the status

XBEGIN STARTED when a transaction starts successfully. If the transaction later aborts,

then the execution jumps back to xbegin which then returns the appropriate error status.

On an abort, the thread checks next iter to commit again and re-executes the transaction

(line 25). Each thread checks next iter to commit before committing its transaction (line

29). If it cannot commit next, then it explicitly aborts the transaction using xabort and

re-executes it (line 30). Note that repeatedly checking the value of next iter to commit

within the transaction is not a good idea since the transaction will be automatically aborted

when another thread updates next iter to commit. After a thread successfully commits

its current iteration, it updates next iter to commit (line 33). The TLS version of the
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Figure 5.2: Sample execution of the microbenchmark in Listing 5.1 under TLS implemented
using HTM.

loop requires memory fences at appropriate locations to ensure correct results on x86. We

omit them for the sake of clarity.

If before starting a transaction a thread sees that its current iteration is the next

that must be committed in sequential order, it executes the iteration non-speculatively

(spec exec is set to 0 in line 20). This guarantees that at least one thread eventually

executes its current iteration non-speculatively, thereby ensuring forward progress.

Figure 5.2 shows a sample execution of the loop in Listing 5.2. Thread 0 starts by

executing iteration 0 non-speculatively since next iter to commit is initially set to 0,

while Thread 1 begins by executing iteration 1 speculatively within a transaction. Since

both iterations 0 and 1 update the same element in hash table, a conflict is detected by

the HTM, and Thread 1’s transaction is aborted and restarted. Thread 1 successfully

commits its transaction upon re-execution since Thread 0 updates next iter to commit

to 1 after committing iteration 0. Although Thread 0 successfully executes iteration 2,

it explicitly aborts its transaction in order to maintain sequential ordering as Thread 1

has not yet committed iteration 1. Thread 0 eventually commits iteration 2 on its second

execution. Using software synchronization and explicitly aborting transactions to enforce

transaction ordering can lead to wasted CPU cycles. If there are frequent transaction

aborts, either due to memory conflicts or due order inversion, then the performance of the
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speculatively parallelized version can in fact be worse than the sequential version.

5.3 Improving the Performance of Thread-Level Speculation

In this sub-section we propose software optimizations that can be applied on top of the

TLS implementation discussed in Section 5. We begin by describing how the overhead

of transactional execution can be effectively amortized. We then demonstrate how data

synchronization can be implemented in order to improve the performance of the loops

with frequent inter-loop dependences. We further propose a dynamic tuning mechanism in

order to prevent the performance degradation of the applications which suffer from frequent

speculation failures.

5.3.1 Amortizing Transaction Overhead

The size of a transaction can significantly affect the performance of transactional execu-

tion. Very small transactions cannot hide the overhead of starting and ending a transac-

tion. Larger transactions can effectively amortize transaction overhead. Therefore, in our

TLS implementation each thread speculatively executes a block of iterations within each

transaction. Executing a block of iterations within a transaction also reduces false sharing

between the threads, which in turn reduces the number of transaction aborts since conflicts

are detected at the cache line granularity on Haswell. For example, if each iteration in a

loop updates a 4-byte element of an array, then the iteration block size to eliminate false

sharing on a 64 byte cache line must be 16 iterations (64/4). Note that transaction sizes

cannot be increased indiscriminately. A very large transaction increases the possibility of a

conflict between the threads. A large transaction can also fail if the number of unique cache

lines accessed within it exceeds a hardware specific maximum read/write size. The itera-

tion block size varies for each application depending upon its characteristics. We evaluate

the effect of the iteration block size in detail in Chapter 6.
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5.3.2 Improving TLS Performance Using Data Synchronization

In order to improve TLS performance it is crucial to reduce the number of transaction

aborts due to memory conflicts. Speculative parallelization of a loop with frequent cross-

iteration data dependences can result in poor performance due to the high number of

transaction aborts because of memory conflicts. Therefore, previous works have explored

hardware optimizations for TLS that provide the means to synchronize and forward values

between speculative threads [2, 26, 23, 43]. Unfortunately, existing HTM implementa-

tions do not provide hardware support for data synchronization or data forwarding among

transactions. However, data synchronization can be achieved using software techniques on

current HTM implementations.

Consider the frequently executed loop in the SPEC2006 [60] benchmark hmmer, shown

in Listing 5.3. The loop has two cross-iteration data dependences; line 4 where dc[k] is

computed based on the value of dc[k-1], and line 5 where dc[k] is computed based on

the value of mc[k-1]. The rest of the loop is omitted for the sake of clarity. The data

dependence of dc[k] on dc[k-1] and mc[k-1] leads to frequent speculation failure when

the loop is speculatively parallelized. Synchronization of the frequently dependent value

can help alleviate this problem.

Consider the loop in Listing 5.4, which is the same as in Listing 5.3, except that it has

been speculatively parallelized using explicit synchronization. The calculation of dc[k]

is serialized and ordered using a separate synchronization variable, and executed non-

speculatively, in lines 3-5. The memory fences required for correct execution on x86 have

been omitted. The rest of the original loop is speculatively executed using the approach de-

scribed in the previous section. Since the frequent dependence is no longer executed within

a transaction, the probability of a memory conflict is lower. Although the synchronization

results in partial serialization of the loop, it can result in better performance by eliminating

frequent speculation failures. However, it is important to limit the number of instructions

serialized in order to achieve good performance. Although the loop in Listing 5.4 illustrates
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synchronization using a block size of 1 iteration, the approach can be easily extended to

an arbitrary block size. We also note that the same technique can be used to synchronize

scalar value communication between speculative threads.

Only certain loops are amenable to data synchronization. If there are too many fre-

quently occurring data dependences, or if the number of instructions in the serial portion

is large, then synchronization can lead to poor performance. Of the evaluated SPEC2006

benchmarks which contained frequent cross-iteration data dependences, only hmmer was

amenable to synchronization. We find that using synchronization greatly reduces the num-

ber of memory conflicts in this application.

5.3.3 Dynamic Performance Tuning

Certain applications can suffer from frequent transaction aborts resulting either from mem-

ory conflicts or out of order transaction commits. If the transaction abort rate is very high,

the TLS performance of such applications can in fact be worse than that of the sequential

execution. However, this might not be the case for all the inputs to a given applica-

tion. Therefore, a dynamic framework that can monitor the TLS performance and revert

to sequential execution in case of frequent speculation failure is desirable. We propose

a dynamic tuning framework that utilizes the hardware performance counters available

on modern processors to automatically monitor TLS performance and disable speculative

parallelization when necessary.

A possible heuristic to identify if TLS performance is worse than the sequential exe-

cution performance is the abort rate of the transactional execution. If the abort rate is

very high then it is likely that the performance of the speculatively parallelized version of

the application is worse than that of the sequential version. We find that sampling the

transaction abort rate of a small fraction of the speculatively parallelized main loop of the

application is sufficient in order to make the decision of enabling or disabling TLS in the



60

application. Hardware performance counters available on modern processors provide a con-

venient means of deriving the transaction abort rate of a given piece of code. We maintain

two versions of the main loop in each application - the original sequential version, and the

modified speculatively parallelized version. When the loop is executed for the first time,

we use the TLS version of the main loop and monitor the transaction abort rate of the first

5% of the total number of iteration blocks in the main loop. If the transaction abort rate is

above a threshold, we execute the remaining iterations of the main loop sequentially. We

use an aggressive threshold of 90% in our experiments (we discuss the reasons for choosing

the aggressive threshold in Chapter 6). If the transaction abort rate is lower than the

threshold, we continue to execute the TLS version of the main loop, however, we do not

continue to monitor the transaction abort rate.

The overhead of sampling the transaction abort rate of the main loop using the hardware

performance counters is negligible. Moreover, we sample the abort rate for only for a

small fraction of the speculatively parallelized main loop. Instrumenting the code in order

to monitor the transaction abort rate is straightforward. We measure the values of the

appropriate performance counters once before starting the execution of the main loop,

and once again after the required number of iteration blocks have been completed. The

transaction abort rate is derived from the measured values. Note that this methodology

precludes the tuning mechanism from adapting to time-varying phase behaviors of the

main loop. In order to account for such behavior, the main loop would need to sampled

periodically. However, we find that such a periodic sampling mechanism increases the

overhead and offers relatively little performance benefit for the evaluated applications.
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1 #define SIZE 10000

2 #define NUM_ITERATIONS 1000000

3 struct bucket *hash_table[SIZE];

4 volatile int next_iter_to_commit;

5

6

7 ...

8 void *thread_function(void *targ)

9 {

10 int start_index = *((int *) targ);

11 int inc_to_next_iter = nthreads - 1;

12 int cur_iter_index;

13 int spec_exec;

14 int status;

15

16 for (i = start_index; i < NUM_ITERATIONS; i += inc_to_next_iter) {

17 cur_iter_index = i;

18 try:

19 if (cur_iter_index == next_iter_to_commit) {

20 spec_exec = 0;

21 }

22 else {

23 spec_exec = 1;

24 if ((status = _xbegin()) != _XBEGIN_STARTED)

25 goto try;

26 }

27 //lines 7-8 from original loop

28 if (spec_exec) {

29 if (cur_iter_index != next_iter_commit)

30 _xabort(0xff);

31 _xend();

32 }

33 next_iter_to_commit = cur_iter_index + 1;

34 }

35 }

Listing 5.2: The microbenchmark in Listing 5.1 speculatively parallelized using HTM

support. The listing illustrates how software synchronization can be used to enforce

ordered transactions in HTM.
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1 for (k = 1; k <= M; k++) {

2 ...

3 ...

4 dc[k] = dc[k-1] + tpdd[k-1];

5 if ((sc = mc[k-1] + tpmd[k-1]) > dc[k]) dc[k] = sc;

6 ...

7 ...

8 }

Listing 5.3: Frequently executed loop in hmmer.

1 for (k = 1; k <= M; k++) {

2 //compute mc[k]

3 //start serial & ordered

4 //compute dc[k]

5 //end serial & ordered

6

7 //transaction start

8 ...

9 ...

10 ...

11 //transaction end

12 }

Listing 5.4: TLS version of frequently executed loop in hmmer using data

synchronization. The frequent data dependence in the loop is ordered and executed

non-speculatively using software synchronization.



Chapter 6

Evaluating Thread-Level

Speculation

Chapter 5 outlined our proposed mechanism to implement TLS using Haswell’s HTM

support. Chapter 5 also discussed software optimizations to improve the performance of

our proposed TLS design. In this chapter, we present detailed analysis and results which

demonstrate the performance of our TLS implementation.

6.1 Methodology

We use a 4-core, 4-thread x86 Intel Xeon E3-1225 v3 Haswell processor with TSX support

to conduct our experiments. The processor speed is 3.2GHz and does not support simul-

taneous multithreading (SMT). Consequently, each core runs a single thread. Each core

has a 32KB private L1 data cache and a 256KB L2 unified cache. All the cores share an

8MB L3 cache.

We begin with a simple micro-benchmark to demonstrate the overhead associated with

transactional execution. We then evaluate the performance of TLS using a selected set of

SPEC2006 [60] benchmarks. We choose these benchmarks since previous studies [50] have

63
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demonstrated that they are able to benefit from speculative parallelization in a simulated

environment. In particular, we focus on mcf, milc, hmmer, h264, lbm, and sphinx3,

since they were demonstrated to achieve more than a 50% performance improvement com-

pared to their sequential versions when speculatively parallelized. It is worth pointing

out that, previous studies on TLS using simulators [50, 68, 69, 40] often build on a TLS

execution model with hardware support for ordered transactions, data forwarding between

the threads, as well as word level conflict detection. These features are not available on

the HTM support in Haswell. The lack of such support forbids us from achieving the

previously claimed performance gain.

In each application, we focus on the set of loops that were demonstrated effective with

speculative parallelization by previous work [50, 51], and manually parallelize the loops.

We use the POSIX thread library to parallelize the applications. Automatically selecting

loops for speculative parallelization is beyond the scope of this work. Previous work has

proposed techniques for selecting suitable loops for speculative parallelization in sequential

applications [40]. We use the transactional memory intrinsics provided in GCC (version

4.8) to implement our transactions. Compiler support for TSX is invoked with the -mrtm

flag. Unless mentioned otherwise, we always use the optimal iteration block size for all

the experiments in this paper. We use the Intel Performance Counter Monitor (PCM)

library to monitor the hardware performance counters for our dynamic tuning mechanism.

The SPEC reference inputs are used in all the experiments. Table 6.1 illustrates the

application name, the location of the most frequently executed loop in the source code of

the application, as well as the execution coverage of these loops. In other words, all the

performance improvements presented in this paper are obtained on real hardware using

real benchmarks.
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Application Loop Coverage

mcf pbeampp.c: 165 63%

milc quark stuff.c:1523 35%

hmmer fast algorithms.c:133 79%

h264 mv-search.c:982 17%

lbm lbm.c:186 59%

sphinx3 vector.c:513 35%

Table 6.1: The evaluated SPEC2006 applications along with their frequently executed loops
and the execution coverage of the loops.

6.2 Micro-benchmark Results

We use a simple micro-benchmark to evaluate the effect of the iteration block size on TLS

performance, the overhead of transactional execution, and the overhead of the transaction

aborts due to order inversion. The micro-benchmark iterates through an array of 16,384

(16K) integers incrementing each integer 1,000 times. The micro-benchmark is highly

parallel and does not have any cross-iteration data dependences. We choose an array of

size 16,384 so that the entire array occupies an integral number of cache lines ((16K * 4)

/ 64 = 1K cache lines) completely. We parallelize the outer-loop of the micro-benchmark

using TLS. Although executing the iterations out of order does not affect the correctness of

the micro-benchmark, we ensure that the iterations executed by the threads are completed

in the same order as in the sequential version of the benchmark. In the TLS version,

we use iteration block sizes which are multiples of 16 iterations so that each transaction

operates on an integral number of cache lines. Consequently, there are no memory conflicts

due to false sharing among parallel threads in the TLS version. We experiment with the

speculatively parallelized version of the micro-benchmark with 1, 2 and 4 threads. The

single thread TLS version executes the same code as the parallel versions except that is uses

just one thread. Consequently, there are no transaction aborts due to memory conflicts or
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Figure 6.1: The execution time of the micro-benchmark speculatively parallelized using
1, 2 and 4 threads, normalized to its sequential execution time across various transaction
sizes. The 1 thread version executes the same code as the 2 and 4 thread versions, except
with just a single thread. Consequently, there are no aborts due to memory conflicts in
the 1 thread version.

order inversion in the single thread version. We use the 1 thread version to highlight the

overhead of transactional execution in the absence of aborts. Note that even the 2 and

4 thread TLS versions do not encounter any transaction aborts due to memory conflicts,

however, the 2 and 4 thread TLS versions do suffer from transaction aborts due to order

inversion.

Figure 6.1 shows the execution times of the speculatively parallelized versions of the

micro-benchmark, normalized to the sequential execution time, for 1, 2 and 4 threads

across various iteration block sizes shown as number of instructions per transaction. Each

iteration of the main loop contains 8 instructions. The data highlights the impact of the

transaction size on the performance of TLS using HTM. Focusing on the performance of

the 1 thread version, we see that when the number of instructions per transaction is small

it cannot effectively amortize the overhead of transactional execution even in the absence

of the transaction aborts due to memory conflicts and order inversion. We see that the TLS

performance gradually increases as the number of instructions per transaction increases,
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and once the optimal transaction size is reached the performance is close to sequential

performance. At the optimal transaction size the overhead of transactional execution is

negligible. Note that a larger transaction size increases the chances of a memory conflicts

among the threads. However, since the micro-benchmark does not have any memory

conflicts this effect is not manifested. Moreover, a very large transaction size can also

increase the number of memory locations read and written within the transaction, which

in turn can cause aborts due to read/write set buffer overflows. Since the micro-benchmark

accesses only a few cache lines even at very large transaction sizes this effect is not visible.

Once the optimal size is reached the performance of the 1 thread TLS version remains

constant.

We see a similar trend in the 2 and the 4 thread versions. A small transaction size

results in poor performance. In fact, the performance of the 2 and the 4 thread versions is

worse than the 1 thread version at very small transaction sizes since the parallel versions

suffer from transaction aborts due to transaction order inversion. However, at the optimal

transaction size TLS improves the performance of the micro-benchmark by 1.2x with 2

threads and by 1.6x with 4 threads. The performance remains constant once the optimal

transaction size has been reached. These results show that if the sequential application

is amenable to speculative parallelization, then TLS implemented using the current HTM

can result in a significant performance improvement.

Figure 6.2 shows the percentage of the aborted and successful transactions in the spec-

ulatively parallelized version of the micro-benchmark. The figure shows the percentage of

successful transactions, and the percentage of transactions aborted due to memory con-

flicts, order inversion, read/write buffer overflows, and other unknown reasons. The data

is shown for both the 2 and the 4 thread versions. When a transaction is aborted in Intel

TSX, the reason for the abort is recorded in the EAX register using an opcode as described

in Chapter 2. We use the opcode to track the reason for each transaction abort. Aborts due

to memory conflicts and buffer overflows have pre-defined opcodes. In our experiments, an
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Figure 6.2: The percentage of transactions aborted in the speculatively parallelized version
of the micro-benchmark for 2 and 4 threads. The transaction abort rate is split to show
the fraction of the total abort rate caused due to different reasons.

explicit abort due to xabort() is recorded using a special opcode which indicates that the

transaction was aborted due to an order inversion (line 33 in Listing 5.2). The ”Unknown”

reason corresponds to the case when the processor does not record any opcode in the EAX

register on a transaction abort. Although there are two other valid EAX opcodes for a

transaction abort in Intel TSX (”Abort due to a debug trap” and ”During nested transac-

tion”), they did not occur in our experiments. From Figure 6.2, we can see that 10.5% of

the transactions are aborted with 2 threads, and the abort rate increases to 42.5% with 4

threads. As expected, we do not see any transaction aborts due to memory conflicts in the

micro-benchmark. Most of the aborts are because of order inversions which occur due to

small timing differences among the threads. The 4 thread version shows an increase in the

number of the transaction aborts due to order inversion since there is a higher chance of

the transactions committing out of order with 4 threads running in parallel. These results

show that the lack of ordered transaction support in the current HTM implementations re-

sults in a considerable amount of wasted cycles when a sequential application is parallelized

using TLS.
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Figure 6.3: The parallel execution times of the main loop in the evaluated SPEC2006
applications normalized to their corresponding sequential execution times for 2 and 4 thread
versions.

6.3 SPEC2006 Results

In this subsection we present a detailed analysis of the performance gain achieved by the

selected SPEC2006 benchmarks using speculative parallelization. We begin by evaluating

the performance improvement of the speculatively parallelized main loops in the evaluated

applications. We then examine the causes for speculation failures in these applications in

detail. Next, we analyze the effect of the iteration block size on TLS performance and

demonstrate how choosing the appropriate iteration block size can effectively amortize the

overhead of transactional execution. Finally, we study the impact of TLS on the overall

performance of the SPEC2006 applications and the effectiveness of the proposed dynamic

tuning policy.

6.3.1 Performance Improvement with TLS

Figure 6.3 compares the sequential and the parallel execution times of the speculatively par-

allelized loops in the SPEC2006 applications. The figure shows the parallel execution time

of the main loop in each application normalized to the loop’s sequential execution time, for
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the 2 and the 4 thread versions. The normalized execution time is split to show the fraction

of the useful (TX-Useful) and the aborted (TX-Abort) transactional execution time. We

see that TLS improves the performance for some applications, while frequent speculation

failures lead to performance degradation in others. Speculative parallelization improves the

execution time of the main loop for 2-thread applications such as mcf (0.87), milc (0.8),

hmmer (0.89), and sphinx3 (0.59), while it degrades the performance of the main loop in

h264 (1.15) and lbm (3.88). For the 4-thread versions, TLS improves the performance in

the case of mcf (0.8), milc (0.88), and hmmer (0.91), and degrades the performance for

h264 (1.38), lbm (3.93), and sphinx3 (1.07). The time taken to complete the useful work

decreases as the number of threads increases due to the increased parallelism. However,

we also see an increase in the fraction of the aborted transactional execution time as the

number of threads increases. These results show that TLS implemented using HTM does

not scale well as the number of threads increases.

6.3.2 Causes of Speculation Failure

Figure 6.4 shows fraction of the useful and aborted transactions in the parallelized SPEC2006

applications. The figure shows the percentage of the successful transactions, and the per-

centage of the transactions aborted due to memory conflicts, order inversions, read/write

buffer overflows, and other unknown reasons. The data is shown for both the 2 and the 4

thread applications. Almost all the transactions are aborted in h264 and lbm, which re-

sults in the applications performing poorly with both 2 and 4 threads. mcf, milc, hmmer,

and sphinx3 show a performance improvement with TLS due to their relatively low abort

rates. However, they do not scale well since the transaction abort rate in these applications

increases significantly when going from 2 to 4 threads.

Examining the reasons for the transaction aborts, we see that almost all of the aborts

in the 2 thread applications, with the exception of mcf and milc, are due to memory

conflicts. Even in the case of mcf, the transaction aborts due to memory conflicts are
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Figure 6.4: The percentage of transactions aborted in the speculatively parallelized versions
of the evaluated SPEC2006 applications for 2 and 4 threads. The transaction abort rate
is split to show the fraction of the total abort rate caused due to different reasons.

Application TLS perf. TLS perf.

w/o data sync. w/ data sync.

hmmer - 2 threads 7.16 0.89

hmmer - 4 threads 8.76 0.91

Table 6.2: Impact of data synchronization on the TLS performance of hmmer.

much larger than the aborts due to other causes. The percentage of the transaction aborts

due to order inversion increases for most of the applications when run with 4 threads. This

is expected, as there are more speculative threads running in parallel in the 4 thread version

which increases the probability of the transactions committing out of order. Even with the

increase in the percentage of the transaction aborts due to order inversion, memory conflicts

continue to be the dominant cause of aborts in the 4-thread versions of mcf, hmmer, h264,

lbm and sphinx3. Overall, mcf, milc, hmmer, and sphinx3 are amenable to TLS among

the evaluated applications. However, they still suffer from frequent memory conflicts, and

the lack of support for ordered transactions in Intel TSX; especially in the 4-thread versions.
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Figure 6.5: The execution times of the 2 thread TLS versions of the SPEC2006 applications
normalized to their sequential execution times with various iteration block sizes.

We focus on hmmer since it is a special case where synchronization was effective in

eliminating a frequent cross-iteration dependence (Section 5.3.2). Table 6.2 shows the

execution times of the speculatively parallelized main loop of hmmer, with and without

data synchronization, normalized to its sequential execution time. The data is shown for

both the 2 and the 4 thread versions. The frequent inter-iteration data dependence in the

main loop of hmmer (line 9 of Listing 5.3) leads to almost all the transactions aborting due

to memory conflicts. Consequently, the TLS performance of the application is much worse

than its sequential performance. However, once the frequent inter-iteration dependence is

serialized using synchronization, we see that the TLS performance improves greatly. We

only focus on the TLS version of hmmer with data synchronization in this section.

6.3.3 Amortizing Transactional Execution Overhead

Figure 6.5 shows the execution times of the 2-thread TLS versions of the evaluated ap-

plications normalized to their sequential execution times for the various iteration block

sizes. The data is shown for the iteration block sizes of 4, 8, 12, 16, 20, and 24 iterations.
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Figure 6.6: The execution times of the TLS versions of the SPEC2006 applications run
with 1 thread normalized to their sequential execution times.

The results show that the choice of the iteration block size has a big impact on TLS per-

formance. We see that each application has an optimal iteration block size which varies

depending on its characteristics. A very small iteration block size cannot amortize the

overhead of starting and terminating a transaction. However, a very large iteration block

size increases the probability of a memory conflict among the parallel threads. Moreover,

a very large transaction size can also lead to the per thread read/write buffers overflowing

as the number of the unique memory locations accessed within the transaction increases.

The iteration block size also has an impact on the amount of the memory conflicts due to

false sharing, as described in Section 5. Manually computing the optimal iteration block

size for an application is challenging. A detailed study on automatically choosing the op-

timal iteration block size for an application is beyond the scope of this paper. Prior work

has demonstrated that the thread size for speculative parallelization can be chosen using

compiler-based [39, 34, 33, 44, 64, 59] and hardware techniques [63, 45].

Figure 6.6 evaluates the overhead of transactional execution in the evaluated applica-

tions. Figure 6.6 shows the execution times of the evaluated applications speculatively par-

allelized using 1 thread, normalized to their sequential execution times. The speculatively
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Figure 6.7: Parallel execution times of the evaluated SPEC2006 applications, normalized
to their corresponding sequential execution times for 2 and 4 thread versions.

parallelized versions use HTM to execute the code. However, since they are sequential,

there are no transaction aborts due to conflicts or buffer overflows. Any overhead is due

to starting and terminating a transaction. Since we use the optimal iteration block size for

each application, there are no transaction aborts due to read/write buffer overflows. From

the figure we see that the overhead of starting/ending a transaction is minimal in all the

applications. It is negligible in the case of mcf, hmmer, and h264. It is 2% in the case of

sphinx3, and 3% for milc and lbm. These results show that the overhead of starting and

ending transactions can be amortized in these applications by selecting the appropriate

iteration block size.

6.3.4 Overall Performance

Figure 6.7 compares the total sequential and parallel execution times of the SPEC2006

applications. The figure shows the total execution time of the TLS version of each appli-

cation normalized to its sequential execution time, for 2 and 4 threads. The normalized

execution time split to show the fraction of the time spent outside the parallelized main



75

loop (sequential), the fraction of the time spent doing useful work within the speculatively

parallelized loop (TX-Useful), and the fraction of the time wasted to transaction aborts

(TX-Aborts). The results show the same trend as in Figure 6.3. Speculative paralleliza-

tion is faster for 2-thread applications such as mcf (0.95), milc (0.95), hmmer (0.95),

and sphinx3 (0.89), while it is slower than the sequential version for h264 (1.02) and lbm

(2.08). For the 4 thread applications, TLS improves the performance in the case of mcf

(0.92), milc (0.97), and hmmer (0.96), while it degrades the performance for h264 (1.05),

lbm (2.1) and sphinx3 (1.02). Although TLS degrades the performance of the main loop

in both lbm and h264, the overall performance of h264 is much better than lbm since

the execution coverage of the main loop is much lower in h264 (Table 6.1). As expected,

we see that the execution time spent outside the main loop does not change between the

2-thread and the 4-thread versions. Overall, the time taken to complete the useful work

in the parallelized loop decreases with the increasing number of threads. However, in all

the cases we see that the time wasted due to the transaction aborts increases as the num-

ber of threads increases. This trend is also reflected in the transaction abort rates shown

in Figure 6.4, and explains why we see minimal improvement in the performance of the

parallelized applications when going from 2 to 4 threads.

6.3.5 TLS Performance with Dynamic Tuning

Figure 6.8 shows the total execution times of the TLS versions of the SPEC2006 appli-

cations parallelized using the dynamic tuning mechanism (Section 5.3.3), normalized to

their sequential execution times. The figure shows that the simple dynamic tuning scheme

correctly predicts the applications where speculative parallelization degrades the perfor-

mance and disables TLS in such cases. In these applications, the main loop is executed

sequentially using a single thread. For applications where TLS improves the performance,

the dynamic tuning policy does not disable TLS. We find that the aggressive abort rate

threshold of 90% is required since TLS fairs better than sequential execution in applications
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Figure 6.8: Parallel execution times of the dynamically tuned SPEC2006 applications
normalized to their corresponding sequential execution times for 2 and 4 thread versions.

such as mcf, milc, and sphinx3 (2-thread version) despite a considerably high transaction

abort rate. Moreover, since the TLS performance of an application is likely to be better

than that of the sequential version unless it experiences very frequent transaction aborts,

using an aggressive threshold helps disable TLS only in cases where TLS degrades the

application performance significantly. We note that the threshold of the dynamic tuning

policy can be easily varied to a more conservative value if desired.

6.4 Summary

In this work we demonstrated the performance potential of implementing TLS using the

HTM support offered by the Haswell processor. HTM support provides mechanisms for

efficient detection of inter-thread data dependence violations and mechanisms for rollback

when speculation has failed. These mechanisms are also the basis for implementing efficient

TLS. However, HTM does not provide the hardware support to ensure that all the threads

can commit in a pre-determined order and does not support synchronized inter-thread data

communication. Thus, we proposed software mechanisms to emulate these behaviors.
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Under TLS, we parallelized a set of sequential applications from the SPEC2006 bench-

mark suite, which are not amenable to parallelization using traditional parallelizing compil-

ers, and showed that TLS yields a performance improvement: we achieved more than 10%

performance improvement in the parallelized code regions, and 5% or more overall perfor-

mance improvement with 2 threads in the following applications: mcf, milc, hmmer, and

sphinx3. Our evaluation also shows that using software synchronization to reduce frequent

inter-iteration dependences can greatly help reduce the number of memory conflicts in cer-

tain applications. The relatively small overall program improvement is partially because

of the lack of a TLS compiler that can automatically select all the code regions amenable

to speculative parallelization. Therefore, we are only able to parallelize a relatively small

fraction of the total execution. The proposed dynamic tuning policy accurately identifies

and disables TLS in the applications where TLS degrades performance. Under the dynami-

cally tuned TLS policy, we achieve an average improvement of 15% in the parallelized code

regions, and an overall performance improvement of 4% with 2 threads. However, TLS

implemented using the limited hardware support available on the current HTM does not

scale well as the number of threads increases. Our analysis reveals that the most common

cause of speculation failures is memory conflicts, followed by aborts due to transactions

committing out of order. Our work demonstrates the feasibility of parallelizing sequential

applications, that are otherwise not parallelizable, through Thread-Level Speculation on

real multicore processors.



Chapter 7

Conclusion and Future Work

Progress in computer architecture in tandem with advances in semiconductor technology

lead to the persistent improvements in the performance of uniprocessor systems until the

early 2000s. At the turn of the century, the processor industry made a decisive shift towards

multicore processors in order to extract more performance while consuming less power.

Multicore and many-core processors have become pervasive ever since. As a response to

this trend, software developers are aiming to extract more parallelism from a wide range of

existing and emerging applications. Numerous programming and compiler tools have been

proposed in order to aid the development of multithreaded software capable of harnessing

the processing power of modern multicore processors. There have also been numerous works

aimed specifically at improving the performance of multithreaded applications on multicore

processors. For example, the authors in [46] characterize the cache behavior of multithread

applications with the aim of improving their cache performance on multicore processors.

Recently, processor vendors have introduced hardware support for transactional execution

in order to further aid software developers extract sufficient parallelism from applications.

Although primarily intended for improving the performance of multithreaded software, the

introduction of hardware support for speculative parallel execution opens up avenues of

research in other areas. This dissertation explores the use of transactional execution in

78
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order to address performance and correctness challenges in a broad range of software.

In the first half of the dissertation, we describe a correctness problem that can arise

due to a discrepancy in the memory consistency models of the host and guest systems in a

cross-ISA system virtualization environment. We demonstrate the need for memory consis-

tency model emulation support in parallel system emulators. We propose two mechanisms

for emulating memory consistency models: memory fence insertion and execution transac-

tionalization. We discuss the tradeoffs involved, and compare the performance impact of

the two mechanisms. We show that, on microprocessors with adequate hardware support

for transactionalizing instruction sequences, transactional execution is a viable alternative

to memory fence insertion for certain workloads. Therefore, we propose and evaluate a

hybrid approach that dynamically determines whether to emulate the memory consistency

model by inserting fence instructions or through transactional execution. The proposed

hybrid technique outperforms both the fence insertion mechanism and the transactional

execution approach.

In the second half of the dissertation, we describe how transactional execution support

in multicore processors, in the form of Hardware Transactional Memory (HTM), can be

leveraged to improve the performance of sequential applications which cannot be paral-

lelized using traditional parallelization techniques. We explore how a previously proposed

speculative parallelization technique for sequential applications, Thread-Level Speculation

(TLS), can be realized using HTM support available on current processors. We begin by

highlighting the similarities and the differences between the hardware features required for

TLS, and those guaranteed by HTM. We then demonstrate software techniques to imple-

ment TLS using HTM support. Further, we illustrate software optimizations to improve

the performance of our proposed TLS implementation. Our evaluation of TLS on a set

of sequential applications which cannot be automatically parallelized shows that TLS im-

proves the overall program performance by up to 11% compared to the sequential version.
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7.1 Future Directions

The work presented in this dissertation demonstrates the use of transactional execution

to address a broad range of software issues. The work in this dissertation opens multiple

avenues of research and development in both the industry and academia. Based on our

experiences, we present a concrete list of features, if implemented in future HTM offerings,

we believe would help the adoption of HTM and TLS in a wide range of software. We

also discuss future research problems in the areas of transactional memory and speculative

parallelization.

7.1.1 Recommendations for Future HTM Implementations

Although the HTM support in current processors greatly aids in the development of mul-

tithreaded software, the following features can promote the use of HTM in a wider range

of software.

Hardware Performance Counters for Speculation Management : Current proces-

sors implement a limited set of hardware performance counters for monitoring and

tuning speculative execution. Existing hardware performance counters supply infor-

mation about a limited set of speculation failure causes, and provide information

about the transaction abort rate, but not the actual CPU cycles spent in success-

ful and failed transactions. A richer set of hardware performance counters can help

developers gain more insight into the performance of their software and identify the

bottlenecks more easily. A richer set of hardware performance counters can also help

in the dynamic management of speculation aggressiveness in both HTM and TLS

execution modes.

Hardware Support for Improving TLS Efficiency : Incremental hardware features

on top of the already available support for transactional memory can improve the

efficiency of TLS. Hardware support that allows speculative threads to commit in
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a pre-determined order can eliminate speculation failures due to order inversion in

TLS. Support that allows synchronized data communication can avoid speculation

failures due to frequently occurring data dependences. Finally, hardware support

that enables word level conflict detection can eliminate speculation failures due to

false sharing. The support of these features will eliminate the need to use software

techniques, such as those presented in this thesis, to realize TLS.

7.1.2 Directions in Transactional Memory and Speculative Paralleliza-

tion Research

The introduction of hardware support for transactional execution in current processors

presents new avenues of research.

Software Support for Speculative Parallelization : Until hardware support for TLS

is available in processors, the software techniques for implementing TLS presented in

this dissertation can facilitate the parallelization of legacy and emerging sequential

applications which cannot be parallelized through traditional parallelization tech-

niques. The development of an optimized TLS library which uses current HTM sup-

port will enable easy adoption of TLS by software developers. The development of

a compiler that automatically parallelizes the code regions in sequential applications

using hardware support for speculative execution will further help in the widespread

deployment of TLS.

Leveraging HTM to Address Challenges in Lock-Free, Concurrent Software : Par-

allel algorithms and data structures that do not rely on traditional mutex locks in

order to enforce mutual exclusion among parallel threads have been researched ex-

tensively by prior works. These lock-free, concurrent programs aim to extract more

performance by eliminating lock contention among parallel threads in an application.

When implemented on current multicore processors with relaxed memory models,
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many of these data structures and algorithms require the use of memory fences in

order to enforce certain ordering constraints between memory operations for correct

execution. This thesis presented the use of transactional execution as an alternative

means of enforcing memory ordering in processors implementing relaxed memory

models. Future research into the use of transactional execution in concurrent data

structures and algorithms can help to further improve the performance of these ap-

plications.
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