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System emulation is widely used in today’s computer systems. This technology opens new opportunities for
resource sharing as well as enhancing system security and reliability. System emulation across different
instruction set architectures (ISA) can enable further opportunities. For example, cross-ISA emulation can
enable workload consolidation over a wide range of microprocessors and potentially facilitate the seamless
deployment of new processor architectures. As multicore and manycore processors become pervasive, it is im-
portant to address the challenges towards supporting system emulation on these platforms. A key challenge
in cross-ISA emulation on multicore systems is ensuring the correctness of emulation when the guest and
the host memory consistency models differ. Many existing cross-ISA system emulators are sequential, thus
they are able to avoid this problem at the cost of significant performance degradation. Recently proposed
parallel emulators are able to address the performance limitation, however, they provide limited support for
memory consistency model emulation.

When the host system has a weaker memory consistency model compared to the guest system, the em-
ulator can insert memory fences at appropriate locations in the translated code to enforce the guest mem-
ory ordering constraints. These memory fences can significantly degrade the performance of the translated
code. Transactional execution support available on certain recent microprocessors provides an alternative
approach. Transactional execution of the translated code enforces sequential consistency (SC) at the coarse-
grained transaction level, which in turn ensures that all memory accesses made on the host machine con-
form to SC. Enforcing SC on the host machine guarantees that the emulated execution will be correct for any
guest memory model. In this paper, we compare and evaluate the overheads associated with using trans-
actions and fences for memory consistency model emulation on the Intel Haswell processor. Our experience
of implementing these two approaches on a state-of-the-art parallel emulator, COREMU, demonstrates that
memory consistency model emulation using transactions performs better when the transaction sizes are
large enough to amortize the transaction overhead, and the transaction conflict rate is low; while inserting
memory fences is better for applications in which the transaction overhead is high. A hybrid implementation
that dynamically determines which approach to invoke can outperform both approaches. Our results, based
on the SPLASH-2 and the PARSEC benchmark suites, demonstrate that the proposed hybrid approach is
able to outperform the fence insertion mechanism by 4.9%, and the transactional execution approach by
24.9% for 2-thread applications; and outperform them by 4.5% and 44.7%, respectively for 4-threaded exe-
cution.
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1. INTRODUCTION

System virtualization, or system emulation, is a key technology that is widely used
in today’s computers. Data centers reduce costs by employing virtualization in order
to utilize computational resources more efficiently. Virtualization also provides strong
isolation between different applications running on the same hardware, thereby re-
sulting in better security and reliability in the cloud. System emulation has numerous
applications beyond cloud computing as well. Emulation is widely used as a safe way
to examine malware. Emulation also facilitates execution migration of applications
across different platforms and devices. Support for emulation across processors with
different instruction set architectures (ISA) can open up further opportunities in many
different applications of system emulation.

Cross-ISA emulation can help data centers to consolidate workloads over a wider
range of processors. It can also enable new processor architectures to be deployed easily
in data centers without any changes to existing applications. For example, x86-based
applications can take advantage of servers built with emerging low-power processors
with different ISAs. Cross-ISA emulation support in data centers in turn can poten-
tially open numerous avenues. It can enable data centers to offer Platform-as-a-service
(PaaS) on multiple processor architectures irrespective of the underlying server hard-
ware. It can enable wider adoption of ubiquitous computing, which harnesses the cloud
to run mobile applications, by supporting virtual execution of mobile applications on
cloud servers with different ISAs.

Cross-ISA emulation also has potential applications beyond the data center. It can
facilitate the execution of incompatible applications on desktop and mobile phones, as
well as allow application execution to migrate between different devices seamlessly.
For example, it can allow applications developed for ARM mobile processors to run on
x86 mobile processors (and vice-versa). Cross-ISA emulation is a crucial development
and debugging tool for software developers aiming to port applications to multiple
devices with different ISAs. Architects of new ISAs can leverage cross-ISA emulation
to emulate the new architecture on existing machines. Cross-ISA system emulation
can also allow legacy applications written for older ISAs to run on current systems.

Recent advances in semiconductor technology have resulted in multicore and het-
erogeneous multicore processors that drive systems from servers to mobile phones. In
response to this trend developers are exploiting parallelism in applications. With par-
allel applications becoming more ubiquitous, cross-ISA virtualization of multithreaded
programs is crucial. Although a large body of research exists on system virtualization,
relatively few of the prior works address the challenges unique to multithreaded ap-
plications. One of the key challenges of virtualizing multithreaded applications across
ISAs is ensuring that a program written for the guest system is executed correctly on
the host system when the memory consistency models of the two ISAs differ.

The memory consistency model of a processor defines how the results of memory
accesses in a program will appear to the programmer. The most intuitive memory con-
sistency model is the sequential consistency (SC) model [Lamport 1979] which specifies
that the memory operations from a processor appear to execute atomically and in the
order they are specified in the program. Enforcing sequential consistency, however,
prohibits a number of architecture optimizations crucial to high performance. There-
fore, most modern processors choose to implement relaxed memory consistency models
which are weaker than SC. However, they provide special memory fence instructions
as a means to enforce SC. Table I shows the ordering constraints enforced in some
modern processor architectures compiled from previous studies [Adve and Gharachor-
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Relaxation
W → R
order

W → W
order

R → RW
order

SC
x86-TSO X

SPARC-TSO X

SPARC-PSO X X

SPARC-RMO X X X

POWER X X X

ARM X X X

Table I: Relaxed memory consistency models of modern processors compared to SC. A
Xindicates the corresponding constraint is relaxed.

Fig. 1: Pseudocode of an x86 guest application emulated on a POWER host system. All
variables have an initial value of 0.

loo 1996; Owens et al. 2009; Maranget et al. 2012]. Different architectures vary in the
ordering constraints they relax compared to SC. If the guest and host systems in a
virtual environment have different memory consistency models, then it can lead to an
incorrect execution of the guest application [Smith and Nair 2005]. An emulated exe-
cution is considered incorrect if the order of memory operations that occurred during
the actual execution on the host, could not have occurred on the guest system.

Consider the pseudocode shown in Figure 1 involving two threads (Thread 0 and
Thread 1) and two shared variables (x and y). Thread 0 reads the value of x into a local
variable r1, and writes to y, while Thread 1 reads the value of y into a local variable r2,
and writes to x. All the variables have an initial value of 0. Assume that the program
is executed on an emulated x86 machine running on a POWER host system. Note
that the x86 and POWER memory consistency models differ (Table I). Table II shows
all the possible values of r1 and r2 at the end of the execution of the program. It
also indicates the outcomes that are valid under the x86 and the POWER memory
consistency models. Under the x86 model, the final outcome of r1 = 1 and r2 = 1 is
illegal since the outcome requires the stores to x and y to be reordered before the loads
to r1 and r2 in both the threads, which is not possible since the x86 model ensures that
stores are not reordered with preceding loads (R→W order is not relaxed). However,
all the possible outcomes are valid on POWER since the memory consistency model
does not guarantee any ordering among the memory accesses. Hence, the virtualized
x86 system can observe an illegal result (r1 = 1 and r2 = 1). Therefore, in a cross-
ISA virtualized environment, if the guest system has a stronger memory consistency
model than the host system, it can lead to an incorrect execution. However, if the guest
system has a weaker memory consistency model than the host system (e.g. POWER on
x86), then the execution is guaranteed to be correct.

Existing cross-ISA system emulators [Bellard 2005; Magnusson et al. 2002] circum-
vent this issue by executing multithreaded programs sequentially - by emulating a
multicore guest system through time-sharing using a single core on the host system.
However, such emulators do not harness the power of multicore processors since they
are not parallel. Recently proposed parallel emulators use multiple cores on the host
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Result x86-TSO POWER
r1 = 0, r2 = 0 X X

r1 = 0, r2 = 1 X X

r1 = 1, r2 = 0 X X

r1 = 1, r2 = 1 × X

Table II: Effect of the memory consistency model on the result of Figure 1

(a) using fences (b) using transactions

Fig. 2: Correct x86 emulation on the POWER host system.

Fig. 3: Possible orderings of memory accesses using transactions on the POWER host
system.

system to emulate multicore guest systems [Wang et al. 2011; Ding et al. 2011]. Conse-
quently, they are much faster than sequential emulators. However, they only support
emulation of guest and host systems with the same ISA (e.g. x86 on x86), or a guest
system with a weaker memory consistency model than the host system (e.g. ARM on
x86).

In order to ensure correct emulation when the guest system has a stronger memory
consistency model than the host system, an emulator must insert memory fences in
the translated host code at runtime. For the example shown in Figure 1, a memory
fence must be inserted between the load to r1 (r2) and the store to y (x) in the trans-
lated POWER host code by the emulator. The memory fence ensures that the load and
store in a thread do not get reordered. Figure 2(a) shows the pseudocode of the correct
translated host code.

Parallel emulators can adopt transactional execution as an alternative to runtime
fence insertion in order to ensure correct emulation. Consider the pseudocode of the
translated POWER host code shown in Figure 2(b) which is identical to the guest ap-
plication in Figure 1, except now the parallel region is transactionally executed on
the host system by each thread. Transactional execution ensures that all memory ac-
cesses within a transaction appear to be executed atomically and isolated from other
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transactions. It also ensures that transactions from the same thread are executed in
order. Therefore, transactional execution effectively enforces sequential consistency on
the host system. The only two possible orderings of the guest code on the POWER host
system and the corresponding results, both of which are legal on the x86 guest memory
consistency model, are shown in Figure 3.

Parallel emulators can leverage either Hardware Transactional Memory (HTM), or
Hardware Lock Elision (HLE) that are supported on recent processors [Intel Corpora-
tion 2013; Jacobi et al. 2012; Cain et al. 2013] in order to realize transactional execu-
tion. HTM allows for speculative execution of code regions, memory conflict detection,
and rollback/replay of aborted transactions. HLE allows critical sections to execute
speculatively and concurrently [Rajwar and Goodman 2001]. A speculative critical sec-
tion is aborted and re-executed normally when a conflict is detected by the hardware.
Therefore, the parallel region in Figure 2(b) can be executed inside either a transaction
(HTM), or a lock-elided critical section (HLE), with the same results. However, there
can be implementation differences depending on whether the HTM support automat-
ically ensures forward progress of aborted transactions, or requires the programmer
to ensure forward progress by explicitly specifying fallback code to be executed on a
transaction abort. We clarify the implementation differences in Section 3.2.

There are tradeoffs involved between using memory fences and transactions for
memory consistency emulation. Emulation using memory fences allows selective en-
forcement of certain memory ordering constraints so as to exactly emulate the guest
memory consistency model. Emulation using transactions, on the other hand, guar-
antees that the emulated execution will be correct on any guest memory consistency
model by enforcing SC on the host system. Although transactional emulation enforces
a stricter constraint than necessary, it can outperform emulation using memory fences
under certain conditions. Previous studies have shown that fences are not always nec-
essary at runtime if the accesses to shared data made by the threads in a program do
not conflict with each other [von Praun et al. 2006; Lin et al. 2010]. Therefore, when
emulating using fences, the translated host code incurs the overhead of a fence instruc-
tion, which is high [Duan et al. 2009; Lin et al. 2010], even when it is unnecessary.
Unlike fences, which incur a fixed cost on every execution, transactions incur a vari-
able cost depending on the abort rate. If there are no conflicts between the threads
operating on shared data, then all the transactions will commit without any aborts,
resulting in better performance.

In this paper we focus on the problem of supporting system virtualization of a guest
system with a stronger memory consistency model than the host system. To the best
of our knowledge, this is the first work to explore the problem of supporting cross-ISA
system virtualization of guest and host systems with different memory consistency
models. This paper makes the following contributions:

— We discuss the tradeoffs involved in using memory fences and transactions for mem-
ory consistency model emulation and characterize the overhead of using memory
fences and transactions on a recent processor. Our characterization shows that trans-
actional emulation is a viable alternative to using memory fences for memory consis-
tency model emulation.

— We implement the two approaches on a recently proposed parallel emulator and
highlight the implementation issues. We propose a hybrid technique that switches
between using fences and transactions depending on the application characteristics
in order to minimize the overhead.

— We evaluate the overhead of the two approaches and our hybrid technique on a set of
real-world parallel applications. The results show that, on average, emulation using
the proposed hybrid technique is 4.9% faster than emulation using fences, and 24.9%
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(a) (b)

Fig. 4: A correct execution of translated POWER host code (a) without the need for
memory fences, (b) without any transaction aborts.

faster than emulation using transactions for 2-thread applications. The correspond-
ing numbers for 4-thread applications are 4.5% and 44.7%, respectively

The rest of the paper is organized as follows. We begin by discussing the tradeoffs in-
volved in using fences and transactions for memory consistency model emulation and
characterize the overhead of memory fences and transactions in a recent processor
using a set of kernels in Section 2. We then discuss the issues involved in implement-
ing the two techniques in an emulator and propose a hybrid technique which selects
the best approach based on the program characteristics in Section 3. We evaluate the
performance of the two approaches and our hybrid technique on real world parallel
applications in Section 4. We discuss the related work in Section 5 and conclude in
Section 6.

2. ELIMINATING CONSISTENCY VIOLATIONS USING MEMORY FENCES AND

TRANSACTIONS

In this section we elaborate on how memory fences and transactions can be used to
emulate a stronger guest memory consistency model on a host system with a weaker
memory consistency model. We discuss the tradeoffs involved in using the two tech-
niques in detail. We characterize the overhead of using memory fence instructions and
transactions on a recent processor by using a set of kernels.

2.1. Memory Fences

When emulating a guest system on a host system with a weaker memory consistency
model, the emulator must ensure that the guest memory consistency model is faith-
fully emulated on the host system. One way of ensuring that certain memory order-
ings are enforced is by inserting fences in the translated host code at runtime. Memory
fences are expensive instructions that take tens of cycles to execute on average since
they stall the processor until all the memory accesses issued before the memory fence
are completed. Finding a correct and efficient placement of memory fences for a pro-
gram is a challenging task [Burckhardt et al. 2007; Kuperstein et al. 2010; Fang et al.
2003; Duan et al. 2009]. Inserting fences conservatively results in redundant fences
and degrades the performance of the program, while using too few fences can cause
incorrect emulation.

Even if the number of fences inserted, and their placement, is optimal, previous
studies show that a large fraction of the inserted memory fences are in fact unneces-
sary at runtime [von Praun et al. 2006; Lin et al. 2010]. Figure 4(a) shows an execution
of the POWER host code translated using fences from Figure 2(a). Here Thread 0 com-
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pletes its accesses, and its effects are visible to Thread 1, before Thread 1 executes its
own accesses. In this execution, the final result is legal on the x86 guest even without
any fences inserted in the translated code, since, even if the accesses made by both
threads are reordered on the POWER host system it will not lead to a consistency
violation.

2.2. Transactional Execution

Transactional execution support implemented in recent processors provides an alter-
native method of ensuring correct emulation of a guest system on a host system with a
weaker memory consistency model without the use of memory fences. HTM or HLE can
be used to group the accesses made by the translated host program into coarse-grained
transactions. Hardware support ensures that all memory accesses within a transaction
appear to execute atomically and in isolation. It also guarantees that all the transac-
tions executed by the same thread are sequentially ordered. Therefore, transactional
emulation guarantees sequential consistency at the coarse-grained transaction level.
Consequently, all the memory accesses made by the guest application on the host sys-
tem are also sequentially consistent. Enforcing sequential consistency on the host ma-
chine ensures that the emulated execution is guaranteed to be correct on any guest
memory consistency model. Note that the granularity of the transactions does not af-
fect correctness although it can impact performance, and that the accesses within a
transaction can be reordered while still appearing to conform to sequential consistency.

Although transactional emulation enforces sequential consistency on the host ma-
chine it can in fact outperform emulation using memory fences. Unlike fences, which
incur a fixed cost on every execution, the cost of a transaction varies depending on
the abort rate. If there are no conflicts between the threads during execution, then
all the transactions will commit without any aborts. Figure 4(b) shows a conflict-free
execution of the POWER host code translated using transactions from Figure 2(b).
In this execution, Thread 0 commits its transaction before Thread 1 begins executing
its own transaction. Therefore, there is no conflict between the transactions and both
commit without any aborts. In this execution, the accesses within a transaction can be
reordered on the POWER host and the execution would still be correct. The transac-
tional version of the translated code can outperform the fence version since it does not
incur the overhead of executing fence instructions.

The transactional emulation can also result in poor performance under certain con-
ditions. Small transactions cannot effectively amortize the overhead of starting and
ending a transaction. Thus, they can result in poor performance. However, increas-
ing the transaction size beyond a certain limit leads to diminishing returns. Large
transactions can result in conflicts among memory accesses that are well separated
in time and that cannot lead to consistency violations in the guest application. Such
false conflicts can increase the abort rate of the transactions, thereby resulting in poor
performance.

2.3. Overhead Characterization

In this section we characterize the overhead and tradeoffs between using memory fence
instructions and transactions on a recent processor. Our test system is a 4-core, 4-
thread x86 Haswell processor with HTM and HLE support running at 3.2GHz. We
choose the Haswell architecture since it is currently the only x86 processor with trans-
actional execution support. Our evaluation does not characterize the hardware pa-
rameters of the transactional execution support implemented in Haswell since this
has already been done by previous work [Ritson and Barnes 2013]. We use HLE to
implement our transactions (lock elided critical sections). We begin by comparing the
overhead of memory fences and transactional execution in the absence of aborts using
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Fig. 5: Execution times of the fence and transactional versions of a sequential micro-
benchmark normalized to that of a no-fence and no-transaction baseline across differ-
ent transaction sizes.

a simple single threaded micro-benchmark. We then evaluate both the correctness and
the performance tradeoffs of memory fences and transactional execution using a a set
of concurrent, lock-free algorithms.

2.3.1. Overhead: Fences vs. Transactions. We use a single-threaded micro-benchmark
to compare the overhead of memory fences and conflict-free transactional execution
on Haswell. The micro-benchmark consists of a single loop that iterates 100 million
times. Each iteration of the loop performs a store to a memory location, followed by
a load from a different memory location. Therefore, the store and load in this micro-
benchmark might be executed out of order on x86. We design two versions of the micro-
benchmark where this re-ordering is prevented. In the fence version we insert a fence
(the x86 mfence instruction) between the store and the load, while the transactional
version executes each iteration of the loop within a transaction. Note that since the
micro-benchmark is single-threaded, there are no aborts due to memory conflicts in
the transactional version. Since the loop accesses only a few cache lines, the transac-
tional version does not experience any aborts due to buffer overflows either. We vary
the size of each transaction in the transactional version by varying the number of loop
iterations executed within each transaction, while keeping the total number of loop
iterations constant.

Figure 5 shows the execution time of the fence and the transactional versions of the
micro-benchmark normalized to the baseline which does not enforce any ordering. The
data is shown for various transaction sizes. Each iteration of the loop contains 6 in-
structions and we vary the number of iterations within a transaction in steps of 10. The
results show that the overhead of memory fences on x86 is considerably high. The over-
head of transactional execution, on the other hand, varies depending on the transac-
tion size. When the transaction size is small, the overhead of transactional execution is
considerable. However, even at a small transaction size the overhead of using memory
fences is much higher. As the transaction size increases, the overhead of transactional
execution is amortized and performance improves. Once a large enough transaction
size is reached, the overhead of transactional execution is negligible and the perfor-
mance is comparable to sequential execution. Increasing the transaction size beyond
this optimal size does not lead to any performance benefit. These results demonstrate
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that memory fences are expensive instructions on x86. They also highlight that us-
ing transactional execution to enforce memory ordering, instead of memory fences, can
lead to substantial performance benefits if the abort rate is low and the transactional
overhead is amortized.

2.3.2. Concurrent Micro-Benchmark Results. In order to evaluate both correctness and the
performance tradeoffs, we use a set of concurrent, lock-free algorithms which are writ-
ten assuming SC. Thus, these micro-benchmarks require memory fences for correct ex-
ecution on x86 machines. All these algorithms enforce mutual exclusion among threads
in a multi-threaded program, using only shared memory variables for communication.
Each algorithm describes an entry region, which is executed by a thread prior to enter-
ing the critical section, and an exit region, which is executed by a thread once it exits
the critical section. We briefly describe the kernels below.

— Peterson’s algorithm: A well known algorithm [Peterson 1981] for enforcing mu-
tual exclusion in a multi-threaded program. The algorithm requires 1 fence in the
entry region code for correct execution on the x86 ISA.

— Big-Reader lock algorithm (BR-lock): A reader-writer lock implementa-
tion [Bovet and Cesati 2005] originally proposed and used in the Linux kernel. The
algorithm requires 2 fences, both in the entry region code, for correct execution on
the x86 ISA.

— Byte-lock algorithm: Another reader-writer lock implementation proposed in [Dice
and Shavit 2010]. The algorithm requires 2 fences, both in the entry region code, for
correct execution on the x86 ISA.

— Dekker’s algorithm: A well known algorithm [Dijkstra 1965] for enforcing mutual
exclusion among 2 threads. It requires 2 fences in the entry region code for correct
execution on the x86 ISA.

Each kernel is a simple program where multiple threads compete simultaneously
to increment a shared variable using a mutex lock implementation listed above. Each
thread increments the shared variable a fixed number of times in a loop. One iteration
of the main loop involves executing the entry region code, incrementing the shared
variable, and executing the exit region code. The threads do not wait between suc-
cessive increments and therefore, these programs have high contention. We check for
correctness by testing the value of the shared variable at the end of program execution
to confirm that there were no violations of mutual exclusion. Two versions are imple-
mented for each kernel: a fence version that uses memory fences, and a transactional
version (with no fences). In the transactional version of the program, each iteration of
the main loop is performed as a single transaction by a thread. We vary the size of a
transaction by varying the number of iterations executed within a transaction, while
keeping the total number of iterations constant. The number of iterations is varied
by unrolling the main loop as many times within each transaction. Note that the en-
try and exit region codes are executed as many times as the number of increments of
the shared variable in each transaction. Although the kernels are not representative
of real-world applications, they are useful in order to simulate the conditions under
which transactional execution can outperform fences on a real machine.

Effect of transaction size: Figure 6 (a, c, e, g) shows the execution time of the
transactional version of each program normalized to the fence version, across different
transaction sizes. The data is shown for 2, 3, and 4 threads. Only two thread results are
shown for Dekker’s algorithm since it cannot be implemented for more than 2 threads.
We choose the fence version as the baseline in order to compare the relative perfor-
mance of memory fences and transactional execution. Since the micro-benchmarks en-
counter a livelock in the absence of memory fences, we do not choose micro-benchmarks
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(a) Peterson’s algorithm with high contention (b) Peterson’s algorithm with no contention

(c) BR-lock algorithm with high contention (d) BR-lock algorithm with no contention

(e) Byte-lock algorithm with high contention (f) Byte-lock algorithm with no contention

(g) Dekker’s algorithm with high contention (h) Dekker’s algorithm with no contention

Fig. 6: Execution time of the kernels using transactions normalized to execution time
using memory fences under low and high contention for different transaction sizes.

without fences as the baseline. For all the programs, as the transaction size increases,
the performance improves until an optimal size and then begins to drop. Larger trans-
actions amortize the overhead of starting and ending a transaction thereby resulting
in better performance. However, very large transactions also increase the possibility
of conflicts between the threads, which in turn increases the abort rate of the trans-
actions. A large transaction can also fail if the number of unique cache lines accessed
within the transaction exceeds a hardware specific maximum read/write size [Ritson
and Barnes 2013]. However, this phenomenon is not observed in the evaluated ker-
nels since each of them accesses just a few unique cache lines within a transaction.
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Peterson’s, BR-lock, Byte-lock and Dekker’s kernels access 3, 3, 2 and 3 unique cache
lines within a transaction, respectively. Therefore, the transactions in these kernels
abort only due to data conflicts resulting from the increase in the number of instruc-
tions (loads/stores) per transaction. Some of the drop in the performance at very large
transaction sizes is also due to the aggressive loop unrolling necessary to increase the
transaction size. The 2 thread results show that the transactional version, even with
a suboptimal transaction size, is faster than the fence version. The execution time of
the optimal transactional version of Dekker’s, Peterson’s, BR-lock, and Byte-lock, with
2 threads, is 0.05, 0.17, 0.88, and 0.83 times the execution time of the fence version,
respectively.

Effect of conflict rate: All these programs have a high conflict rate between the
threads, and as we increase the number of threads it further increases the possibility
of a conflict. A high conflict rate increases the abort rate of the transactions, thereby
leading to poor performance. Figure 6 (a, c, e, g), shows that the performance of the
transactional version drops significantly compared to the fence version for 3 and 4
threads. The execution time of the optimal transactional version of Peterson’s, BR-
lock, and Byte-lock, with 4 threads, is 1.12, 1.45, and 1.05 times the execution time
of the fence version, respectively. In order to see the performance of transactional ex-
ecution when there are no conflicts, we modified the kernels (both the fence and the
transaction versions) such that each thread operates on a private lock and increments
a private variable. Since the transaction support on Haswell tracks dependencies at
the cache block level, false sharing among threads can also result in conflicts. There-
fore, we take care to place all the private locks and variables on different cache blocks
so as to eliminate any false sharing. Figure 6 (b, d, f, h) summarizes the results for
all the kernels with 2, 3 and 4 threads. The results show that the performance of the
transactional version gets better as the transaction size increases. However, under no
contention, there is no drop in the performance of the transactional version at large
transaction sizes. The dip in performance observed in the kernels at very large trans-
action sizes is due to the aggressive loop unrolling required to generate large transac-
tions. Moreover, the performance does not vary with the number of threads when there
is no contention. The execution time of the optimal transactional version of Dekker’s,
Peterson’s, BR-lock, and Byte-lock, with 2 threads, is 0.2, 0.2, 0.88, and 0.85 times
the execution time of the fence version, respectively. The corresponding numbers with
4 threads for Peterson’s, BR-lock, and Byte-lock are 0.2, 0.86, and 0.82, respectively.
Even as the number of threads increases, the transactional version is faster than the
fence version.

These results show that transactional execution is a viable alternative to using
fences in order to emulate a stronger guest memory consistency model on a host with a
weaker memory consistency model. If the transaction sizes are large enough to amor-
tize the transaction overhead, and the conflict rate among the threads is low, then
transactions can outperform fences. However, if the transactions are too small, or if
the program has a high conflict rate, then emulation using memory fences can result in
better performance. Therefore, a hybrid technique that can intelligently employ trans-
actions or memory fences for emulation depending on the application characteristics
will likely yield the best performance.

3. MEMORY CONSISTENCY MODEL EMULATION

In this section we first briefly describe key techniques in system emulation. We then
discuss the implementation issues involved with using fences and transactions for
memory consistency model emulation. We then propose a hybrid technique that uses
both fences and transactions for emulation in order to minimize the overhead.
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System emulators commonly use dynamic binary translation to convert guest as-
sembly instructions to host instructions. The guest code is translated on-the-fly, one
basic block at a time. Once a basic block has been translated, it is executed on the
host system and the emulator then begins translating the subsequent basic block. Em-
ulators use a translation cache to store recently translated translation blocks. When
translating a guest basic block, the emulator first searches for a corresponding trans-
lation block in the translation cache. On a cache miss, the guest block is translated and
inserted into the translation cache before execution. Emulators also link translation
blocks that are frequently executed in succession, thereby forming traces. Traces allow
execution to directly jump from one translation block to the next without having to
switch from the translation cache to the emulator code in between, thereby speeding
up emulation.

3.1. Emulation Using Memory Fences

Automatic insertion of fence instructions in parallel programs to eliminate memory
consistency violations is a well known problem. Prior works propose compiler tech-
niques that automatically insert fences, or tools that provide the programmer with
information about possible memory consistency violation bugs in the program [Bur-
ckhardt et al. 2007; Kuperstein et al. 2010; Fang et al. 2003; Duan et al. 2009]. These
techniques rely on static or dynamic program analysis, memory model descriptions or
program inputs. Unfortunately, such high level information is inaccessible to a system
emulator at translation time. Moreover, these techniques have a high cost in terms of
computation time and therefore are not suitable for integration in a system emulator
where dynamic binary translation must be fast. During binary translation the emu-
lator does not have access to information that can help decide whether an access to a
memory address is to a private or a shared variable. It also does not have information
about the semantics of the guest application that is being translated. Therefore, the
emulator must be conservative and insert a memory fence after every guest application
memory operation in order to ensure correctness [Smith and Nair 2005]. Depending
on the number of memory operations in an application, this can lead to a considerable
slowdown.

Fences must be selectively inserted only to bridge the gap between the guest and
the host memory consistency models. Therefore, certain optimizations can be used to
reduce the number of memory fences inserted depending on the guest and the host sys-
tem. For example, if the guest system is an x86 machine emulated on a POWER host
system, then the emulator needs to enforce only R→R, R→W and W→W order on the
host system (Table I). Therefore, the emulator must insert a fence after every read op-
eration. A fence is required only between two write operations. While inserting fences
only after a specific type (read/write) of memory access can be easily implemented in
an emulator, inserting fences only between specific types of memory accesses is harder.
For example, it might not be possible to insert a fence between the last write in a trans-
lation block and the first write in the successive block. This is because there might be
multiple translation blocks that could potentially be executed after a given transla-
tion block. Therefore, the last write in a translation block can be followed by a read
or a write in a successive block. Moreover, translation blocks that are executed suc-
cessively might be translated at different times depending on when they are inserted
into the translation cache and hence, it might not be possible to infer the first mem-
ory operation in a successive translation block at translation time. Therefore, in order
to guarantee correctness the emulator must conservatively insert a fence at the end
of a translation block if the last memory access is a write, thus negating most of the
performance gain due to the optimization. In practice, we find that using simple opti-
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mizations such as inserting a fence only after a specific type of memory operation, is
just as effective.

3.2. Emulation Using Transactions

An emulator can also use transactions for memory consistency model emulation. The
guest code can be partitioned into chunks and executed as transactions on the host
system. The hardware will detect any conflicts among the transactions that are exe-
cuted simultaneously and re-execute them. Since the emulator cannot be certain if a
memory access is to a private or a shared variable, it must enclose every memory access
in the guest application within a transaction. Therefore, emulation using transactions
is equally as conservative as emulation using fence instructions.

The simplest way to form transactions is at the translation block level. However,
translation blocks are typically very small and contain only a few instructions. There-
fore, executing each translation block as a separate transaction can incur a significant
overhead. Executing entire traces as transactions can greatly reduce this overhead
since traces typically contain tens of instructions. However, the transaction length is
limited by the trace length, which can vary depending on the application.

Figure 7(a) illustrates how the guest code can be partitioned into transactions at
the translation block boundaries. The emulator inserts Tx begin and Tx end instruc-
tions around each translation block at translation time. If the emulator uses HLE to
implement the transactions then it must insert lock-elided lock and unlock instruc-
tions instead. A simple approach is to begin every translation block with a {Tx end,
Tx begin} prologue that ends the previous block’s transaction and begins the next one.
Tx begin and Tx end instructions must be inserted when execution jumps to, and from,
the translation cache in order to form complete transactions. Note that transactional
execution ensures that there is an implicit fence between the translation blocks.

Forming transactions at the trace level involves a very small change. The emula-
tor inserts Tx begin and Tx end instructions only when execution jumps to, and from,
the translation cache but not around every translation block, as shown in Figure 7(b).
Transactions must be started at every entry point, and terminated at every exit point,
to the translation cache. Although it might be beneficial to form transactions that are
larger than the trace size it is not be possible to do this in an emulator environment.
All the instructions executed within a trace correspond to the translated guest appli-
cation. However, when the execution jumps out of the translation cache at the end of
a trace, the executed instructions correspond to the emulator code itself. Since only
the translated guest code must be executed inside a transaction, a transaction must
be started and terminated at the beginning and end of a trace, respectively. Thus, any
optimization that increases the trace length of an application will also increase the
size of the transactions formed.

The emulator must generate code differently depending on the hardware support
used to implement the transactions. If the transactions are implemented using HLE,
then the emulator must start and end each transaction with lock-elided lock and un-
lock instructions. HLE, which is currently available only on Intel Haswell processors,
automatically ensures forward progress on an abort by re-executing the transactions
as regular critical sections guarded by atomic locks [Intel Corporation 2013]. Note
that the emulator must use the same global lock to guard all the critical sections gen-
erated in the code. If HTM is used, then each transaction must start and end with
the hardware specific Tx begin and Tx end instructions. Some HTM implementations,
such as IBM z/Architecture, provide support to automatically ensure forward progress
of aborted transactions [Jacobi et al. 2012]. However, other implementations, such as
Intel Haswell and IBM POWER, require the programmer to ensure forward progress
by explicitly specifying fallback code which is executed on a transaction abort [Intel
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(a) Forming transactions at the trans-
lation block level

(b) Forming transactions at the trace
level

Fig. 7: Forming transactions at the translation block and trace level in an emulator.

(a) Guest application with conditional synchro-
nization emulated using transactions at the trace
level. flag1 and flag2 are set to 0 initially.

(b) Guest application with conditional synchro-
nization emulated using transactions at the
translation block level. flag and x are set to 0
initially.

Fig. 8: Forward progress issues in transactional emulation.

Corporation 2013; Cain et al. 2013]. In such cases the emulator must generate the fall-
back code at run-time. The fallback code can point to the original transaction, however
this might lead to the program not making any forward progress. Therefore, the em-
ulator must be able to identify when there is no forward progress being made by the
program (based on a timeout period or by monitoring the transaction abort rate), and
re-translate the code using fences.

Forward progress issues can also arise if the guest application has conditional syn-
chronization. Figure 8(a) shows a guest application with conditional synchronization
that has been translated using transactions at the trace level. The variables flag1

and flag2 are set to 0 initially. The transactions span multiple basic blocks as shown
in the figure. Note that the original guest code might contain fence instructions for the
example shown in Figure 8(a), however, the emulator eliminates all fence instructions
during translation since the code is emulated using transactions. For correct execution
of the program, statement S1 must complete before loop L0, and statement S0 before
loop L1. The introduction of transactions, however, requires that L0 and S0 execute
atomically before S1 and L1, or vice versa. Since the transactions shown in Figure 8(a)
are not serializable, this either leads to a live lock or a dead lock. Live locks are possible
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even when the translated code has transactions at the translation block boundaries.
Figure 8(b) shows an example guest application that has been translated with trans-
actions formed at the translation block boundaries. Both transactions in Figure 8(b)
span a single basic block as shown. In this example, it is possible that the store to x

by Thread 0 continuously aborts the transaction in Thread 1, thereby leading to a live
lock. Such forward progress issues are not unique to transactional emulation, and are
possible with any application that contains ill-formed transactions as demonstrated
by previous studies [Blundell et al. 2005]. The emulator must handle such cases by re-
translating the code using fences as described previously. Prior papers which employ
transactional execution in a binary translation environment propose a similar solution
for detecting when a program is not making any forward progress [Chung et al. 2008].

The guest application may contain user-defined transactions and critical sections.
Transaction support implemented in recent processors automatically handles nested
transactions by subsuming the inner transaction. One of the advantages of using
transactions is that the same approach can work on any host system, as long as it
supports transactional execution, since it does not rely on fences. This makes it attrac-
tive for emulation where the guest-host configurations can vary.

3.3. Hybrid Emulation Using Memory Fences and Transactions

As characterized in Section 2.3, the overhead of using memory fences and transactions
depends on the number of fences inserted at runtime, the conflict rate among threads
in the application being emulated, and the size of the transactions formed at runtime.
Therefore, a hybrid technique that uses both fences and transactions, and automat-
ically chooses the best approach based on these factors, is likely to provide the best
performance.

Such a hybrid technique must estimate the overhead of emulation using transac-
tions and memory fences at runtime. We propose using hardware performance coun-
ters to measure the execution time of the translated host code in order to compare the
overhead of the two techniques. By measuring the number of host cycles elapsed, the
execution time of both versions of the translated host code can be measured accurately.
The emulator profiles the overhead of using fences and transactions periodically, and
then applies the best policy for emulating the application. Both the policies are profiled
for a fixed number of trace executions. During the profiling phase of the fence policy
the emulator measures the execution time of the host code translated using mem-
ory fences. Once the overhead of fence emulation has been measured, the overhead of
transactional emulation is measured similarly. The emulator then makes its decision
and applies the best policy for emulation until the next profiling phase.

The main overhead of dynamic profiling is due to translation cache invalidations.
Before beginning a profiling phase, the emulator has to invalidate previously trans-
lated code and begin translation using the technique being profiled. The translation
cache must be invalidated again when the policy being profiled changes. Similarly, once
both fence and transaction profiling phases have been completed, the translation cache
must be invalidated in order to translate the guest code using the best technique (this
can be avoided if the best policy is the same as the policy that is profiled last). However,
the overhead of translation cache invalidations is small since each translation block
must be translated just once before it is inserted into the translation cache again.
The overhead of measuring execution time using hardware performance counters is
also negligible. Therefore, the overhead of the dynamic profiling technique is low. The
proposed hybrid scheme is simplistic and switches between fence and transactional
emulation at a coarse-grained level. A fine-grained hybrid technique that switches be-
tween fence and transactional emulation at a per-trace or per-translation block level
might yield better performance. However, comparing the execution times of fence and
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transactional emulation at a fine-grained granularity also requires fine-grained book-
keeping operations. The lack of light-weight hardware performance counters makes
the overhead of fine-grained book-keeping operations prohibitively large. The design
of an alternate light-weight fine-grained hybrid technique is challenging. A compre-
hensive treatment of this subject is beyond the scope of this paper.

4. EVALUATION

We use COREMU [Wang et al. 2011], a recently proposed parallel emulator for our
study. Since COREMU supports only x86 hosts, we use a 4-core, 4-thread, Haswell
architecture based, x86 Xeon E3-1225 v3 processor with transaction support as our
host system. No modern processor implements a memory model stronger than the
x86 memory model. Therefore, in order to simulate a guest system with a stronger
memory model we assume a hypothetical sequential consistency guest system with
the x86 ISA. We form guest applications for the sequential consistency guest system
by taking existing x86 programs and removing all the fence instructions from them.
We verify that the sequential consistency guest applications produce incorrect results
when emulated on the x86 host system using the unmodified COREMU emulator. We
discuss our results in the context of a real cross-ISA system in Section 4.4.

We use two sets of multithreaded guest applications to check for correctness and per-
formance, respectively. The kernels described in Section 2.3 are used to verify correct-
ness. We use eleven (entire set) applications from SPLASH-2 [Woo et al. 1995] and nine
applications from PARSEC [Bienia et al. 2008] in order to evaluate the performance
overhead of the two techniques. We use the updated input sets from SPLASH-2x and
PARSEC-3.0 for our evaluation. Since RAYTRACE is common to both SPLASH-2 and
PARSEC we include it just once. We omit BODYTRACK, FERRET and VIPS from PAR-
SEC due to difficulties encountered when running them on COREMU.

We modified COREMU to enforce sequential consistency (the guest memory model)
on the host by automatically inserting memory fences after every store instruction in
the guest application. Although a memory fence is required only between a store and
a load in order to guarantee sequential consistency on an x86 system (to enforce the
W→R constraint), such an optimization does not benefit much (Section 3.1). In prac-
tice, we find that inserting a fence after every store is a simple and effective solution.
No fences are inserted after loads since it is not required on an x86 host system. In
order to get a rough estimate of the overhead of fence emulation on a host system with
a relaxed memory consistency model (such as POWER), we assumed that the x86 host
has a relaxed memory model, and modified COREMU to insert a memory fence after
every load and store instruction in the guest application. We use the x86 mfence in-
struction to enforce the required ordering in all our fence emulation implementations.

We also modified COREMU to execute the guest code as transactions using HLE
support available on the host system. This simplifies our implementation since we do
not have to generate fallback code or handle forward progress issues that might arise
from using HTM support instead (Section 3.2). We implement transactional support
at both the translation block and the trace level in order to evaluate them. We han-
dle guest applications with conditional synchronization that can lead to a livelock or
deadlock when emulated using transactions by monitoring the transaction abort rate
using hardware performance counters and re-translating the guest application using
memory fences if the abort rate if very high. We do not encounter such behavior with
the evaluated real-world applications, and the kernels used to verify correctness, since
they do not have such conditional synchronization constructs.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article XXXX, Publication date: May 2015.



Leveraging Transactional Execution for Memory Consistency Model Emulation XXXX:17

(a) 2 threads

(b) 4 threads

Fig. 9: Execution time of the applications on the virtual machine using transactions
(trace level), and memory fences inserted assuming a relaxed host system, normalized
to execution time with fences inserted only after a store instruction.

4.1. Performance Comparison

Figure 9(a) compares the performance of emulation using memory fences and transac-
tions. The figure shows the execution times of the applications on the virtual machine,
emulated with transactions formed at the trace boundaries, normalized to the execu-
tion times when emulated by inserting memory fences only after a store instruction.
The figure also shows the execution times of the applications emulated using memory
fences assuming that the x86 host has a weak memory consistency model (by inserting
a memory fence after every store and load instruction), normalized to the same base-
line. Therefore, in the fence - relaxed host configuration, a memory fence is inserted
after every memory operation in the guest application, while in the baseline system a
fence is inserted only after every store instruction in the guest application. Figure 9(b)
shows the same data for 4-thread applications.

The transactional execution results demonstrate that there is a variation in the be-
havior of different applications. Transactional emulation is faster than the baseline
for 2-thread applications such as RADIOSITY (0.74), RAYTRACE (0.97), WATER (0.77),
RADIX (0.81), BLACKSCHOLES (0.9) and SWAPTIONS (0.9). However, the baseline fence
emulation is faster for BARNES (1.08), FMM (3.35), OCEAN (1.29), LU (1.05), CHOLESKY

(4.06), VOLREND(4.56), DEDUP (1.41), FACESIM(1.30), FLUIDANIMATE (1.11), FRE-
QMINE (1.25), STREAMCLUSTER (1.19) and X264 (1.11). The trends are similar for most
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Application
Inst. (LD + ST) ST Abort rate

per TX per TX per TX (%)
BARNES 43.36 24.36 8.84 46.67
FMM 202.67 36.38 4.33 89.52
LU 8778.67 3445.00 984.33 99.52
OCEAN 185.81 66.04 0.65 90.41
RADIOSITY 38.02 4.63 4.51 2.77
RAYTRACE 17.45 6.82 0.55 1.67
WATER 69.28 27.66 7.24 11.38
FFT 387.38 128.50 45.88 92.66
RADIX 82.68 13.71 4.94 22.73
CHOLESKY 313.00 119.00 29.33 96.55
VOLREND 69.92 23.13 4.50 85.41
BLACKSCHOLES 22.69 6.89 1.96 3.06
CANNEAL 16.69 6.61 3.27 2.00
DEDUP 45.91 20.35 6.36 53.97
FACESIM 49.65 21.90 6.55 55.50
FLUIDANIMATE 32.92 11.15 1.76 25.99
FREQMINE 46.59 21.04 6.85 37.88
STREAMCLUSTER 18.40 7.73 0.25 10.57
SWAPTIONS 26.87 10.30 2.66 24.71
X264 28.32 10.13 2.46 18.99

Table III: Characteristics of the transactions formed during emulation using trans-
actions. LD stands for number of load instructions, ST stands for number of store
instructions, and TX stands for transaction.

applications when run with 4 threads. Transactional emulation and emulation using
the baseline fence configuration are comparable for FFT (1.00) with 2 threads; however
the baseline is faster in the case of the 4-thread version. In the case of CANNEAL (1.00),
the baseline and transactional emulation configurations are comparable for both 2 and
4 threads. These results show that the best technique depends on the characteristics
of the emulated application.

The fence - relaxed emulation results show that, as expected, the execution times
of most applications are much slower when a fence is inserted after every memory
operation in the application. Moreover, unlike transactional emulation, the fence - re-
laxed execution times do not vary between the 2 and 4 thread applications; this is also
expected since fence emulation overhead depends mainly on the number of memory
operations per thread, rather than the number of threads in the application. The re-
sults show that transactional emulation is faster than fence - relaxed emulation for
most of the applications in both the 2 and the 4 thread cases. Therefore, the fence -
relaxed results suggest that transactional emulation can be more beneficial than fence
emulation across a wide range of applications on a host system with a relaxed memory
consistency model. We use the fence - relaxed results solely to illustrate the potential
benefits of transactional emulation on a relaxed host system. Since inserting a fence
after every memory operation is not required on an x86 host system, and doing so can
artificially inflate the overhead of fence emulation, we do not include these results in
the rest of the paper. For the rest of this paper, we refer to the baseline fence emulation
configuration as simply fence emulation.

Table III lists the characteristics of the transactions formed in each application. Note
that the transactions are formed at the trace boundaries. The table shows the average
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Fig. 10: Execution time of the applications on the virtual machine with transactions
formed at the translation block boundaries normalized to the execution time with
transactions formed at trace boundaries.

number of guest instructions, guest memory accesses and guest stores per transaction
in the evaluated applications. It also shows the abort rate of the transactions for each
application when run with 2 threads.

Transactional emulation results in poor performance in BARNES, FMM, OCEAN,
CHOLESKY, VOLREND, DEDUP, FACESIM, FLUIDANIMATE and FREQMINE due to the
high abort rate. Transactions abort in these applications due to data conflicts. Apart
from true data dependency conflicts, false sharing in these applications also results
in aborts since Haswell tracks dependencies at the cache block level. Transactional
emulation in FFT and LU has a high abort rate, but its performance is comparable to
emulation using fences since the overhead of fence emulation is also large due to the
high number of stores per transaction in these applications. In the case of STREAM-
CLUSTER transactional emulation is slower than fence emulation, even with a fairly
low abort rate, since the fence overhead is very low given the small number of stores
per transaction.

Transactional emulation is faster than using fences in BLACKSCHOLES and SWAP-
TIONS since the abort rate in these applications is fairly low. Transactional emulation
outperforms emulation using fences in RADIOSITY, WATER and RADIX because of two
reasons. These programs have very low abort rates leading to a low overhead and, the
number of stores per transaction in these applications is also fairly large resulting in a
high overhead when using memory fences. Transactional emulation is only marginally
faster in RAYTRACE, although it has a low abort rate, since the number of stores per
transaction in the program is small thereby resulting in a low overhead when emu-
lating using fences. In the case of CANNEAL, the two approaches are comparable since
the execution time of the emulated application is dominated by the initial phase where
the main thread reads the input data.

Figure 10 shows the effect of the transaction size on emulation. It shows the execu-
tion time of the applications on the virtual machine when emulated with transactions
formed at the translation block boundaries normalized to execution time with transac-
tions formed at the trace boundaries. The results are shown for 2-thread applications.
The results show that emulation with transactions formed at translation block bound-
aries is significantly slower with as much as 20x slowdown (WATER). This is because
in most of the applications translation blocks are just a few instructions in length, and
transactions at the translation block boundaries are not large enough to amortize the
overhead of starting and ending a transaction. There is a marked difference between
the SPLASH-2 and the PARSEC applications. In the PARSEC applications, the differ-
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ence in the number of instructions per trace and per translation block is not as large
as in the SPLASH-2 applications. However, transactional emulation at the translation
block level is still slower than emulation at the trace level in the PARSEC applications
with as much as 1.89x slowdown (FREQMINE and SWAPTIONS). Since emulation with
transactions formed at the translation block boundaries results in poor performance,
in the rest of this paper we focus only on transactional execution with transactions
formed at the trace level.

4.2. Hybrid Emulation Using Fences and Transactions

Figure 11 shows the execution time of the applications on the virtual machine using
memory fences, transactions, and our hybrid technique, all normalized to the execu-
tion time of the applications without any support. Although emulating an application
without any support can lead to an incorrect emulation, we choose it as the base-
line to illustrate the overhead of each emulation technique. The data is shown for
both 2-thread and 4-thread applications. The results show that the hybrid technique
chooses the best approach for all the applications. Most of the evaluated applications
exhibit bipolar behavior with one technique resulting in much better performance than
the other. Therefore, the proposed simple profiling technique is sufficient in order to
choose the best policy. The profiling overhead for the hybrid technique is less than 1%
and does not result in a slowdown. The average overhead for emulation using fences,
transactions, and the hybrid technique, compared to the incorrect baseline emulation,
is 27.1%, 60.8%, and 20.8% for 2-thread applications; and 32.3%, 128.4%, and 26.3%,
respectively for 4-thread applications. On average, memory consistency model emula-
tion using the proposed hybrid technique is 4.9% faster than emulation using fences
and 24.9% faster than emulation using transactions for 2-thread applications; and
4.5% and 44.7%, respectively, for 4-thread applications.

4.3. Overhead of Memory Consistency Model Emulation

Figure 12 shows the execution time of the applications on the virtual machine, emu-
lated using the hybrid technique, normalized to the native execution time. The nor-
malized time is split to show the contribution of the overhead of memory consistency
model emulation to the total overhead of system virtualization. The data is shown for
both 2- thread and 4-thread applications. On average, the total virtualization overhead
using the hybrid technique is 24.5x for 2-thread applications and 25.8x for 4-thread
applications. The results show that in most applications the overhead of memory con-
sistency model emulation is a small, but non-trivial fraction of the total overhead of
system virtualization. On average, memory consistency model emulation contributes
11.3% and 13.9% of the total system virtualization overhead for 2-thread and 4-thread
applications, respectively. The overhead of memory consistency model emulation can
be decreased by selectively applying the emulation technique to only shared variable
accesses in the application. However, in order to filter the accesses to private data,
the emulator needs access to high level program semantic information. Incorporating
program semantic information in emulators, using compiler or binary analysis, is left
as future work.

4.4. Discussion

Our evaluation illustrates the validity of memory consistency model emulation using
fences and transactions, and highlights the performance tradeoffs between the two ap-
proaches. It also shows that the hybrid technique proposed in this work can correctly
choose the approach with the lowest overhead. Thus, although our evaluation uses
a guest-host pair that differ only in their memory consistency models, our proposed
technique and the performance tradeoffs between fence and transaction emulation are
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(a) 2 threads

(b) 4 threads

Fig. 11: Execution time of the applications on the virtual machine using transactions
(trace level), memory fences, and hybrid techniques normalized to execution time with-
out any support (incorrect emulation).

valid on a real cross-ISA system where both the instruction set and the memory con-
sistency models of the guest-host pair differ.

Transactions formed at the trace level can effectively hide the overhead of starting
and ending a transaction. Therefore, the overhead of transactional emulation depends
mainly on the abort rate. Since the transaction abort rate is an application characteris-
tic, we expect the overhead of emulating an application using transactions to be similar
to the results shown in this paper in a real cross-ISA system. The overhead of fence
emulation, on the other hand, depends on the number of memory operations, which is
an application characteristic, as well as the placement of the fences in the translated
code, which depends on the guest and host memory consistency models. Hence, the
overhead of emulating an application using fences might vary from the results shown
in this paper depending on the host and guest ISA pair. Although the technique with
the lowest overhead for an application might change in a different guest-host ISA pair,
the proposed hybrid technique would still be able to correctly identify it.

The total overhead of system virtualization is likely to increase in a real cross-ISA
system due to the increased instruction translation time. The overhead of memory
consistency model emulation in a real cross-ISA system can increase in cases where
the hybrid technique employs fence emulation, but it would be similar for applications
where transactional emulation is chosen by the hybrid technique. Thus, we expect
the contribution of the overhead of memory consistency model emulation to the total
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(a) 2 threads

(b) 4 threads

Fig. 12: Execution time of the applications on the virtual machine using the hybrid
technique normalized to the native execution time. The normalized time is split to
show the contribution of the overhead of memory consistency model emulation to the
total virtualization overhead.

overhead of system virtualization to be similar to the results shown in Figure 12 in a
real cross-ISA system.

5. RELATED WORK

Previous works have explored system virtualization of multithreaded applications. Se-
quential system emulators, which emulate multithreaded applications by time-sharing
emulated threads on a single physical core on the host system, have been proposed
previously [Bellard 2005; Magnusson et al. 2002; Bochs 2014]. In such emulators the
memory consistency model of the guest system is inconsequential since only one thread
is emulated at a time on the host system. Therefore, sequential emulators can emulate
any guest-host memory consistency model pair. However, they suffer in performance
since they do not utilize the resources available on current multicore systems. Parallel
system emulators, which run multiple emulated threads simultaneously on multiple
physical cores on the host system, greatly increase emulation speed [Wang et al. 2011;
Ding et al. 2011]. But such emulators only support same-ISA guest-host pairs or sup-
port only guest systems that have weaker memory consistency models than the host
systems. The techniques proposed in this paper are orthogonal to these works. They
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can be applied to existing parallel system emulators to extend them to support a wider
range of guest-host pairs.

Techniques for automatic placement of fences in parallel applications running on
relaxed memory systems have been explored in previous work. The delay set analy-
sis algorithm is used widely for inferring the placement of memory fences in parallel
applications on relaxed memory systems [Shasha and Snir 1988]. Various compiler
techniques and automated tools for inserting fences based on the delay set algorithm
have been proposed [Burckhardt et al. 2007; Kuperstein et al. 2010; Fang et al. 2003;
Duan et al. 2009]. However, such techniques are aimed at helping developers write
concurrent programs for relaxed memory consistency models, and rely on static or dy-
namic program analysis, memory consistency model descriptions or program inputs.
The limited availability of program semantic information at runtime, and the high
cost of these techniques makes them unsuitable for use in emulators. The memory
fence insertion techniques discussed in this paper are simple, fast, and low cost tech-
niques suitable for runtime systems.

The idea of executing memory accesses as coarse-grained, sequentially consistent
chunks has been proposed as a solution for enforcing sequential consistency on mod-
ern processors without sacrificing performance [Ceze et al. 2007; Galluzzi et al. 2007;
Hammond et al. 2004a; Hammond et al. 2004b]. These prior works focus on the prob-
lem of enforcing sequential consistency on modern processors while our work focuses
on memory consistency model emulation. We do not propose any hardware changes
and instead leverage existing hardware on processors.

Using transactional memory has been previously proposed as a solution for thread-
safe dynamic binary translation of multi-threaded applications [Chung et al. 2008].
The authors propose using transactional memory to eliminate data races among meta-
data maintained by dynamic binary translation tools in multithreaded applications.
In contrast, our work proposes using transactional execution as a solution for memory
consistency model emulation.

6. CONCLUSION

In this paper we focus on memory consistency model emulation in virtual machines
where the memory consistency models of the guest and the host systems differ. To
the best of our knowledge this is the first work that addresses this issue in system
virtualization. We compare the performance impact of two mechanisms for emulating
memory consistency models: memory fence insertion and execution transactionaliza-
tion. We implement the two mechanisms on COREMU, a parallel emulator. Our ex-
perimental results show that, on microprocessors with adequate hardware support for
transactionalizing instruction sequences, transactional execution is a viable alterna-
tive to memory fence insertion for certain workloads. Thus, we propose and evaluate
a hybrid approach that dynamically determines whether to emulate the memory con-
sistency model by inserting fence instructions or through transactional execution. We
evaluate the proposed hybrid approach on real-world parallel applications from the
PARSEC and the SPLASH-2 benchmark suites. Our evaluation demonstrates that the
hybrid approach is able to outperform the fence insertion mechanism by 4.9% and the
transactional execution approach by 24.9% for 2-thread applications; and outperform
them by 4.5% and 44.7%, respectively for 4-threaded execution.
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