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For today's increasingly power-constrained multicore systems, integrating simpler and more

energy-e±cient in-order cores becomes attractive. However, since in-order processors lack

complex hardware support for tolerating long-latency memory accesses, developing compiler

technologies to hide such latencies becomes critical. Compiler-directed prefetching has been
demonstrated e®ective on some applications. On the application side, a large class of data

centric applications has emerged to explore the underlying properties of the explosively growing

data. These applications, in contrast to traditional benchmarks, are characterized by sub-
stantial thread-level parallelism, complex and unpredictable control °ow, as well as intensive

and irregular memory access patterns. These applications are expected to be the dominating

workloads on future microprocessors. Thus, in this paper, we investigated the e®ectiveness of

compiler-directed prefetching on data mining applications in in-order multicore systems. Our
study reveals that although properly inserted prefetch instructions can often e®ectively reduce

memory access latencies for data mining applications, the compiler is not always able to exploit

this potential. Compiler-directed prefetching can become ine±cient in the presence of complex

control °ow and memory access patterns; and architecture dependent behaviors. The inte-
gration of multithreaded execution onto a single die makes it even more di±cult for the compiler

to insert prefetch instructions, since optimizations that are e®ective for single-threaded

execution may or may not be e®ective in multithreaded execution. Thus, compiler-directed
prefetching must be judiciously deployed to avoid creating performance bottlenecks that
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otherwise do not exist. Our experiences suggest that dynamic performance tuning techniques

that adjust to the behaviors of a program can potentially facilitate the deployment of aggressive
optimizations in data mining applications.

Keywords: Multicore; data mining; prefetching; compilers; optimization.

1. Introduction

At the turn of the century, traditional out-of-order uniprocessor designers were

facing a unique set of challenges that are often identi¯ed as the ILP wall, the memory

wall, and the power wall. These barriers, in particular the power wall, eventually

brought the exponential increase in clock speed to a halt. After the stabilization in

the operating frequency, replicating cores for creating chip-multiprocessors became

the de-facto method for achieving performance improvement. However, as the

number of cores integrated on to a single die increases, it can potentially become

impossible to power up the entire die.1,2 Furthermore, increasing popularity of

mobile computing devices places an even more strigent budget on power consump-

tion. Thus, the integration of simple in-order cores becomes attractive for multicore

architectures.3

As the performance gap between memory and processor widens, the memory

wall has become one of the key hindrances in achieving high performance in modern

microprocessors. The emergence of multicore and multithreaded processors further

complicate the situation: the underlying memory hierarchy must not only serve

memory requests in a timely manner, but also satisfy the increasing bandwidth

requirements and the e®ects of interaction between threads for shared data. Diverse

optimization techniques, both hardware- and software-based, have been proposed to

overcome this gap. Prefetching has been demonstrated e®ective for bringing data

from memory into the cache before they are used, and thus is able to shorten the

e®ective memory access latency. Both hardware4�7 and compiler8�11 optimizations

have been investigated and implemented for modern microprocessors. While out-of-

order processors can tolerate some memory access latencies by issuing instructions

out-of-order, prefetching assumes even greater signi¯cance for in-order processors.

Compiler-based techniques can perform aggressive optimizations across large seg-

ments of codes, even when they are spread across multiple procedures or ¯les. It is

also possible for compilers, taking advantage of available pro¯le information, to

break ambiguous control/data dependencies and schedule instructions even more

aggressively. As a result, compiler-directed prefetching can potentially tolerate long

memory access latencies and complex data structures by scheduling prefetch

instructions appropriately. However, compiler optimizations must rely on static

estimates of runtime behaviors, and it is di±cult to verify the e®ectiveness of com-

piler optimizations across all applications on all inputs. It is possible for compilers

to make poor optimization decisions, and degrade performance. This possible
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performance degradation often hinders the deployment of aggressive optimizations.

The increasing popularity of multithreaded execution further exacerbates the situ-

ation as optimizations that are e®ective for single-threaded execution may or may

not be e®ective for multithread execution.

Explosive growth in the availability of various kinds of data in both commercial

and scienti¯c domains have resulted in an unprecedented need for develop-

ing novel data-driven, knowledge discovery techniques. Data mining12,13 is one

such application. Researchers from both academia14 and industry15 have recog-

nized that the challenges of data mining applications will shape the future

of multicore processor and parallelizing compiler designs. There have been

numerous studies16�19 on the performance characteristics of data mining appli-

cations. These works have pointed out that memory hierarchy performance,

especially that of the last level cache, plays an important role in the performance

characteristics of such applications. Hence, compiler optimizations that aim to

improve memory hierarchy performance can potentially bene¯t data mining ap-

plications. However, many data mining applications contain irregular data

structures, such as hash-tree and hash-table, and complex control °ow, which can

potentially make it di±cult for compilers to deploy aggressive optimizations.

Thus, this paper investigates the e®ectiveness of compiler optimizations on these

emerging workloads, especially prefetching techniques that target memory hier-

archy performance.

In our study, we quantify the impact of memory hierarchy performance on

data mining applications; identify memory intensive operations algorithmically

and determine whether compiler-directed prefetching is e®ective on these data

structures both in single-threaded and multithreaded executions. We have found

that:

. the performance impact of compiler-directed prefetching on data mining appli-

cations is unpredictable. Furthermore, the e®ectiveness of static prefetching in the

same code segments can change over time.

. prefetching at the proper granularity is key. Due to complex control °ow and

irregular access patterns, prefetching at the inner-most loop level is often in-

adequate. Thus, new algorithms must be developed to identify the proper gran-

ularity for prefetching.

. on multicore systems, resource contention and thread-interaction can in°uence the

e®ectiveness of compiler optimization. Hence, dynamically tuning compiler op-

timization deployment can potentially out perform static only approaches.

The rest of the paper is organized as follows: Sec. 2 details our experimental

infrastructure and brie°y describes the various data mining algorithms; Sec. 3

investigates the major characteristics of data mining applications and compares

them with SPEC Integer applications; Sec. 4 analyzes cache performance of
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NU-MineBench; Secs. 5 and 6 evaluate the e®ectiveness of compiler-directed

prefetching on data mining applications in both single-threaded and multithre-

aded execution modes on multicore architectures, respectively; Sec. 7 presents

the e®ect of compiler-directed prefetching on the scalability of data mining

applications; Sec. 8 discusses related work. Finally, we present our conclusions

in Sec. 9.

2. Evaluation Infrastructure

We study the performance characteristics of data mining applications using the

NU-MineBench20 benchmark suite. We evaluate 13 out of 17 benchmarks in this

suite, omitting BAYESIAN, BIRCH, SNP, and GENENET due to di±culties encountered

in compilation. All benchmarks are written in C/C++, and all, with the exception of

AFI, GETI, and ECLAT, are parallelized with OpenMP directives. The benchmarks

are compiled with -O3 using the Intel C/C++ compiler version 11.0.

We choose Intelr Itaniumr 21 as the in-order architecture processor for our study

for two main reasons. First, Itanium, arguably, relies on sophisticated compiler

optimizations to achieve its performance, thus making it the proper platform for

evaluating the e®ectiveness of compiler-directed prefetching. Second, Itanium con-

tains a rich set of hardware performance counters that enable us to study perform-

ance characteristics without cumbersome simulations or intrusive instrumentations.

These applications are evaluated on an eight-core Itanium-based CMP machine with

dual-core Intelr Itaniumr 2 processors running at 1.6GHz. Each of the eight cores

has a 16KB L1I, a 16KB L1D cache, a 1MB L2I, a 256KB L2D cache, and a 9MB

uni¯ed private last-level cache. Although our analysis is derived from a system uti-

lizing private last-level cache, we include discussions on the potential impact of

shared last-level cache systems in appropriate sections.

The PerfMon22 library manages the hardware performance counters. We use Intel

VTune Performance Analyzer tool to identify hot-spots in the programs and to drill-

down to assembly level. Stalls in the Itanium pipeline back-end are divided into ¯ve

mutually exclusive categories. Most of the stalls caused by execution units, waiting

for operands, are due to cache misses. We refer to them as Cache stalls in our ¯gures.

Stalls due to recirculation of data access requests from L1D due to either TLB or L2D

OzQ over°ow are referred to here as Recirculation stalls. Flush corresponds to

stalls caused by pipeline °ushes. In our case, almost all such stalls are caused by

branch mispredictions. RSE corresponds to stalls caused by the Register Stack

Engine, which is negligible in all applications. FE corresponds to stalls caused by the

pipeline front-end. Pin,23 a binary instrumentation tool, is used to collect dynamic

instruction pro¯le data.

In this work, we analyze data mining applications from six di®erent categories

which are listed in Table 1. A detailed description of these benchmarks is provided by

Narayanan et al.20
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3. Characteristics of NU-MineBench

In our prior work,19 we examined the instruction distribution, memory hierarchy

usage and stall distribution in order to study the basic characteristics of data mining

applications. We used SPEC CPU24 for comparison as SPEC has been widely

accepted by computer architects as the chosen benchmark suite for measuring CPU

performance. We observed that, in terms of dynamic instruction mix, the two

benchmark suites show similar trends, but with the following distinctions: SPEC

Integer applications have 54% more store instructions than NU-MineBench pro-

grams, but have 16% fewer load instructions. Data mining applications typically use

the input data to build temporary data structures. These data structures are then

traversed many times with a small number of updates. This access pattern leads to

more loads but fewer stores. SPEC programs also have 45% more branch instructions

as compared to NU-MineBench applications. Having fewer store and branch

instructions potentially gives the compiler more freedom to schedule instructions,

since branches and stores are often the sources of ambiguous control and data

dependencies. In terms of cache miss rate, We observed that L2 cache misses per 1000

instructions is 34% higher for SPEC Integer; and L3 cache miss per 1000 instructions

is the same for both benchmark suites.

Figure 1 shows the stall cycle distribution for the SPEC Integer and the NU-

MineBench benchmark suites are similar despite the di®erences in instruction mix.

Eliminating stalls due to cache misses is key to better performance as nine out of 13

data mining benchmarks spend more than 40% time stalling on cache misses. Many

data mining applications process large input sets, accesses to which typically exhibit

good locality, and thus does not cause signi¯cant stalls. However, at runtime, data

mining benchmarks build large, complex auxiliary data structures, such as hash

trees, to keep track of intermediate states. These structures are often irregular, and

accesses to these cause a large number of cache misses. Hence, for data mining

applications, compiler-directed prefetching is an important optimization. In this

paper, we investigate the e®ectiveness of compiler-directed prefetching for data

mining workloads on in-order processors. In Sec. 4, we revisit the key observations on

memory characteristics of data mining benchmarks as discussed in Mekkat et al.19

and in Secs. 5 and 6, we study the e®ect of compiler-directed prefetching on data

mining benchmarks running in single-thread and multithread modes, respectively.

Table 1. NU-MineBench categories and applications studied.

Category Applications

Association Rule Mining APRIORI, UTILITY MINE and ECLAT
Error Tolerant Itemset Mining AFI and GETI

Classi¯cation SCALPARC, RSEARCH and SVM-RFE

Clustering K-MEANS, FUZZY K-MEANS and HOP

Structure Learning SEMPHY
Optimization PLSA

E®ectiveness of Compiler-Directed Prefetching on Data Mining Benchmarks
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4. Memory Hierarchy Performance

Improving cache performance is key for many data mining applications, since nine out

of the 13 benchmarks we examined spent over 40% of total execution cycles

stalling as a result of cache misses. Our analysis reveals that, although many data

(a)

(b)

Fig. 1. CPU cycles breakdown comparison for (a) SPEC CPU2006 Integer Benchmarks and
(b) NU-MineBench Programs.
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mining applications process large input sets, accesses to the input data usually

exhibit spatial locality and do not su®er from high cache miss rate. However, these

applications often construct large and irregular auxiliary data structures, such as

hash trees.13 Accesses to these data structures exhibit poor locality due to indirect

accesses and pointers.

Although SCALPARC and SVM-RFE are both CLASSIFICATION benchmarks, they

show signi¯cantly di®erent behaviors. SCALPARC stalls on 57% of CPU cycles due to

cache misses. The program generates a large, tree-based model built on the training

(input) data and at each node, a hash table is used. The hash table contains millions

of entries, and does not ¯t in the cache. By examining the addresses accessed by the

program it is clear that accesses to the hash table are irregular and this leads to

frequent cache misses. The compiler does not insert prefetch instructions for this

program as the elements of the hash table accessed cannot be predicted. SVM-RFE,

another classi¯cation benchmark, shows one of the highest stall percentages. It stalls

for 69% of total CPU Cycles, which is almost entirely due to recirculation stalls. The

program kernel makes use of Math Kernel Library, to compute vector dot product,

where it stalls most of the time. Since the stalls occur in the library and not in the

user code, we did not investigate this further.

APRIORI and UTILITY MINE, the two ASSOCIATION rule MINING applications in NU-

MineBench, show similar execution cycle breakdowns. APRIORI stalls for 66% of total

cycles and UTILITY MINE stalls for 62% of total cycles, almost all of which are caused

due to cache misses. Both these association rule mining programs use hash trees in

their algorithm, which tends to be too large to ¯t into the cache and exhibit poor

locality. Hence, repeated accesses to these hash tree data structures generate a large

number of cache misses. AFI, an ERROR TOLERANT ITEMSET mining algorithm, is very

similar to Apriori and ¯nds frequent itemsets in noisy data. Here, compiler is not able

to identify the right granularity to insert prefetch instructions. Moving the prefetch

instruction manually to the outer loop improves the performance of this application

by more than 30%. It is di±cult for the compiler to identify this optimization

opportunity since the outer loop contains conditional branches.

HOP, K-MEANS, and Fuzzy K-MEANS are the three CLUSTERING applications in the

NU-MineBench benchmark suite. HOP stalls for 45% of total CPU cycles, of which

cache misses account for 35% of the CPU cycles. In this application, the instructions

were scheduled poorly which could not e®ectively hide the latency of load instruc-

tions. The compiler failed to unroll certain loops which were inside control state-

ments. Since the compiler was not sure if the loop would be executed at runtime, it

was conservative and did not unroll these loops. By manually unrolling them, the

performance of the program improved by 14%.

5. Prefetching in Single-Threaded Execution

From the previous section, it is clear that the performance of datamining applications,

similar to SPEC Integer applications, highly depends on the performance of the
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memory hierarchy. A large number of compiler optimizations have been developed for

improving memory hierarchy performance. While these optimizations have been

demonstrated e®ective on SPEC benchmarks, it is unclear whether these optimiz-

ations can be e®ective on data mining applications given their complexmemory access

patterns. One key compiler optimization for improving memory hierarchy perform-

ance is prefetching. Asmentioned earlier, the impact of compiler-directed prefetches is

more signi¯cant for in-order processors as they lack the complex hardware mechanism

to hide memory access latency and depend on compiler optimizations to achieve per-

formance. In this section, we provide an in-depth analysis of the impact of compiler-

directed prefetching on data mining applications executing in single-threaded mode.

Figure 2(a) shows the speedup achieved by compiler-directed prefetching on

NU-MineBench benchmarks in percentage. These applications are compiled with

-O3 -opt-prefetch, and the comparison baseline has prefetching disabled (-O3 -no-

opt-prefetch). Bars above zero indicate that compiler-directed prefetching is able

to improve performance, bars below zero indicate otherwise. We also include the

speedup for SPEC benchmarks in Fig. 2(b) for comparison. For SPEC, while a few

benchmarks, MCF, LIBQUANTUM, and HMMER, signi¯cantly bene¯t from compiler-di-

rected prefetching, most benchmarks are not a®ected. It is worth pointing out that

none of the SPEC benchmarks su®er signi¯cant performance degradation. The
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responses of NU-MineBench benchmarks, however, are dramatic: while the per-

formance of some benchmarks improves, equal number of benchmarks show signi¯-

cant performance degradation. Hence, compiler-directed prefetching, although

e®ective for SPEC benchmarks, cannot be blindly applied to data mining appli-

cations.

Prefetch instructions can potentially reduce stalls due to increased load latency

by bringing data into the cache before they are used. However, if not properly

deployed, they can also cause signi¯cant performance degradation. First, compiler-

directed prefetch instructions and instructions used to calculate the prefetching

addresses take up issue slots, and thus increase both static and dynamic instruc-

tion counts. Second, improperly inserted prefetch instructions can bring useless

data into the cache, and even pollute the cache by replacing useful data. This

e®ect can increase cache misses in the application. Finally, prefetching can

increase accesses to shared resources, such as the o®-chip communication channel,

and thus create a bottleneck that would not have existed otherwise. This e®ect is

more evident when the programs are executed in multithreaded modes, and will be

discussed in Sec. 7.

While instruction overhead, cache pollution and resource contention are the most

common causes for performance degradation due to prefetching, some impacts are

less obvious and architecture dependent. We discuss two such cases, where prefetch
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instructions themselves introduce stalls in the pipeline. Although not common,

prefetch instructions can cause exceptions, such as page faults. In Itanium, the

compiler can append prefetch instructions with completers that make the processor

either ignore faults made by prefetch instructions, or service them. For a useful

prefetch instruction, allowing it to raise a fault can bring data into the cache early.

However, a useless prefetch instruction, if allowed to raise a fault, can signi¯cantly

degrade performance. Hence, aggressive optimizations that can lead to exceptions

should be performed only when prefetching is accurate. Prefetch instructions can also

stall the pipeline by competing for resources in the processor. Most modern processor

have a load bu®er where requests to the L2 cache are bu®ered and issued out-of-

order. Prefetch instructions have been known to stall the processor pipeline when the

L2 out-of-order load bu®er is full in certain architectures.25 Aggressive compiler-

directed prefetching can lead to many prefetch instructions being issued. This can

quickly saturate the out-of-order load bu®er, thereby stalling the pipeline since new

load or prefetch instructions cannot be issued.

Inaccurate prefetch instructions cannot only cause detrimental side e®ects such as

instruction overhead, cache pollution, and resource contention, but also cause

pipeline stalls. Thus, the compiler needs to make intelligent choices while inserting

them. In the rest of this section, we analyze the reasons for performance degradation

of data mining programs due to compiler-directed prefetching.

Figure 2 shows that AFI slows down by 17%, APRIORI by approximately 12% and

PLSA by 24% due to compiler directed prefetching. To examine why compiler pre-

fetching degraded the performance in these applications, three di®erent versions of

the binaries are compared. The ¯rst binary (binary1) is produced using the compiler

with prefetching enabled (-O3 -opt-prefetch), the second binary (binary2) is

produced without prefetching (-O3 -opt-no-prefetch), and the last binary

(binary3) is produced manually by replacing key prefetch instructions in binary1

with nop instructions. Hence binary3 has the same instruction count as binary1,

while binary2 has considerably fewer instructions due to the absence of prefetch

instructions and the corresponding address calculation instructions.

In Table 2, for each benchmark, the ¯rst row shows the speedup of binary2 and

binary3 with respect to binary1, which is the baseline. The second and third rows

show the L2D and L3 misses per 1000 instructions, respectively. In all three pro-

grams, binary2 always has the best performance, and binary3 is a close second. Both

binary2 and binary3 perform considerably better than binary1. Although they show

the same speedup, binary3 has fewer L2D and L3 misses per 1000 instructions than

binary2 for all the programs. This is because binary3 has the same number of L2D

and L3 misses, but a higher instruction count that lowers the cache misses per 1000

instructions measurement.

binary2 and binary3 show similar speedup despite the fact that binary3 has more

instructions for prefetch address calculation. These numbers reveal that the over-

head of prefetch address calculation is negligible for all three programs. Thus, it is the
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prefetching e®ect that causes performance degradation, while instruction overhead is

only responsible for a small segment of performance degradation.

Prefetch instructions also account for a large number of L2D and L3 misses in

case of AFI and APRIORI, but do not a®ect the miss numbers in PLSA. Analyzing

the performance monitoring counters in Itanium reveals the cause of the poor per-

formance of each program. In case of AFI and APRIORI, the stalls are caused by

execution units waiting for operand data to be loaded. Prefetch instructions inserted

by the compiler bring in useless data into the cache, and replace useful data resulting

in increased L2D and L3 misses.

In case of PLSA, prefetch instructions inserted by the compiler are redundant,

and prefetch the same data multiple times. The prefetch instructions do not increase

the number of L2D and L3 misses since once the data has been prefetched, sub-

sequent requests to the same location hit in the cache. But the pipeline stalls are

caused due to prefetch instructions being recirculated. Aggressive prefetching by

the compiler saturates the L2 load bu®er and the pipeline stalls since new load

and prefetch instructions cannot be issued until there are vacant entries in the

load bu®er.

6. Prefetching in Multithreaded Execution

On multicore architectures, compiler optimization developers must address the

following concerns: are optimizations e®ective for single-thread execution, e®ective

on multithreaded execution; and are optimized codes equally scalable, as unopti-

mized codes, when the number of threads increase. Furthermore, it is also unclear

how compiler optimizations can a®ect threads that are explicitly synchronized

through barriers and locks. Thus, in this section, we examine the e®ectiveness of

compiler-directed prefetching on multithreaded data mining applications.

Table 2. Comparison of the di®erent binaries for AFI,

APRIORI, and PLSA.

Attribute binary1 binary2 binary3

(a) AFI

Speedup 1.00 1.51 1.49

L2D Misses/K inst 27.1 21.23 17.78

L3 Misses/K inst 19.08 9.85 8.15
(b) Apriori

Speedup 1.00 1.16 1.10

L2D Misses/K inst 18.58 16.01 14.52
L3 Misses/K inst 10.94 7.22 6.82

(c) PLSA

Speedup 1.00 1.38 1.21

L2D Misses/K inst 0.59 0.73 0.58
L3 Misses/K inst 0.07 0.08 0.07
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Figure 3 shows the speedup achieved by compiler-directed prefetching on

multithreaded NU-MineBench benchmarks in percentage. Similar to Fig. 2, these

applications are compiled at the optimization level -O3 with prefetching enabled

(-opt-prefetch), and the comparison baseline has -O3 with prefetching disabled

(-no-opt-prefetch). Each benchmark has four bars, that correspond to the

speedup with one, two, four, and eight threads. A positive value on the graph

indicates that compiler-directed prefetching is e®ective, where as, negative value

indicates that prefetching is detrimental to performance.

For all benchmarks, with the exception of UTILITY MINE, compiler-directed pre-

fetching becomes progressively detrimental with increasing number of threads. This

phenomenon can be mainly attributed to the competition for shared resources among

threads. However, in one isolated case, compiler-directed prefetching becomes pro-

gressively more bene¯cial as the number of threads increase. In this case, prefetching

interfered with the explicit synchronization in the application. In this section,

we investigate the e®ectiveness of compiler-directed prefetching in multithreaded

execution of data mining benchmarks. Here, we omit the discussion of: SVM-RFE

due to poor parallel implementation of the algorithm; SEMPHY since there are no

active compiler-directed prefetching in its critical sections; and also FUZZY K-MEANS

as its behavior is very similar to K-MEANS.

Fig. 3. E®ect of compiler-directed prefetching in multithreaded execution.
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6.1. Competition for shared resources

Compiler-directed prefetching is known to increase the utilization of resources such

as memory bus bandwidth. As shown in Fig. 3, the increase in resource utilization

aggravates with multithreaded execution. We examine two cases, where resource-

sharing becomes the bottleneck and compiler-directed prefetching becomes pro-

gressively less e®ective, as the number of threads increase. Figure 4 shows the bus

utilization of each benchmark, with and without compiler-directed prefetching,

running with one, two, four, and eight threads.

APRIORI, as discussed in Sec. 4, su®ers performance degradation when compiler-

directed prefetching is deployed in sequential execution. The e®ect of aggressive

prefetching becomes more signi¯cant as the number of threads increase, as the bus

utilization is near saturation when prefetching is enabled and thread count is high.

SCALPARC bene¯ts from compiler-directed prefetching at single-thread. However,

in multithread mode, its bene¯t from prefetching drops from 23% for single-threaded

execution to 3% for eight threads of execution. As the number of threads increase,

the fraction of execution time spent in its most time-consuming function increases.

In the code with prefetching, bus utilization is 21%, 37%, 50%, and 55% at this

function for thread numbers one, two, four and eight, where as, code without

prefetching has 13%, 24%, 39%, and 53%, respectively. At lower number of threads,

code with prefetching has a much higher bus utilization than the code without in

this function. This indicates that prefetching is e®ective and making good use of

the bus bandwidth at lower number of threads. However, with increasing number of

threads, the di®erence becomes smaller and at eight threads, the bus utilization

is very similar for the two codes. This means that at higher number of threads, with

the increased portion of execution time spent in this function, both executables tend

to saturate the bus and hence there is no additional bene¯t from having the

prefetching.

Although, HOP and RSEARCH appear to have dramatic increase in bus utilization

in Fig. 4, their impact on performance is minimal since overall bus utilization is low.

Hence, we do not discuss them in this section.

6.2. Cache utilization

For some benchmarks, compiler is able to implement appropriate prefetching and

improve the performance. However, in multithreaded mode, these static optimiz-

ations are not able to adapt to the changing runtime conditions, rendering them

ine®ective. K-MEANS, a clustering algorithm that aims at discovering the underlying

data distribution in a collection of objects, is one such application. It shows recep-

tivity to compiler-directed prefetching in single-thread mode, running 12% faster

than the code without prefetching. This receptivity changes with increasing number

of threads and at eight threads, code with prefetching become 7% slower than the

one without.
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In its critical section, data access is strided for K-MEANS and compiler-directed

prefetch instructions are useful in single-threaded mode. In multithreaded mode, the

entire data is divided among di®erent threads and with increasing number of threads,

the data that each thread handles become small enough to ¯t inside the cache, thus

making the prefetching redundant. The additional memory bus utilization that these

Fig. 4. E®ect of prefetching on bandwidth utilization for NU-MineBench applications.
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instructions create, along with CPU-CYCLES required for address calculation, make the

code with prefetching less e±cient with increasing number of threads.

To study the e®ect of dataset sizes on the e®ectiveness of compiler-directed

prefetching, we used three datasets of di®erent sizes to run K-MEANS and their per-

formance is as shown in Fig. 5. The ¯gure shows the speedup achieved by compiler-

directed prefetching in percentage for K-MEANS, for di®erent dataset sizes, for thread

numbers one, two, four, and eight. The smaller dataset of size 6MB was chosen so as

to ¯t into the last-level cache at relatively lower number of threads whereas, the

datasets of size 100MB and 200MB were chosen so as not to ¯t into the last-level

cache at lower number of threads. As seen in the ¯gure, the smaller dataset ¯ts into

the cache at two threads and renders the compiler-directed prefetching ine®ective.

The 100MB and 200MB datasets seem to ¯t into the last-level cache at eight threads

only. At eight threads, the prefetch e®ectiveness is still much better for 200MB than

100MB which indicates that the dataset is not yet completely ¯tting into the last-

level cache as compared to the 100MB dataset. As we increase the number of threads

even further, the largest dataset will also ¯t into the last-level cache.

6.3. E®ects of locking and serialization

The only exceptional behavior we see in Fig. 3 is UTILITY-MINE. For this application,

compiler-directed prefetching has a positive e®ect and this improvement increases

Fig. 5. K-means speedup (%) for di®erent datasets.
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with number of threads. UTILITY-MINE, an association rule mining algorithm similar

to APRIORI, features strided data access at its major hot-spot. The critical function

uses a lock that serializes the execution. Compiler-directed prefetching is inserted in

this critical section and thus helps in speeding up the application. The e®ectiveness

improves with increasing number of threads as the prefetching reduces the execution

time of the critical section and increases parallel overlap. This leads to a performance

improvement of 1%, 22%, 34%, and 30%, for thread numbers one, two, four, and

eight, respectively, in the critical section. This improvement, however, seems to halt

at eight threads as another section becomes the most time-consuming and the ad-

vantages of compiler-directed prefetching becomes less dominating.

In this section, we examined several scenarios where static compiler optimizations

are not able to provide optimal solutions: (i) in APRIORI and SCALPARC where ad-

ditional pressure on shared resources is introduced with increasing number of

threads; (ii) in K-MEANS where runtime characteristics like dataset size changes with

number of threads. In these scenarios, static compiler optimizations are not able to

adapt to the runtime conditions and these cases warrant dynamic optimization

techniques26�29 for achieving optimal performance. Previous works17�19,30,31 have

studied the sensitivity of data mining benchmarks to last-level cache architecture. In

multithreaded execution, the e®ects of data sharing and resource utilization could be

sensitive to last-level cache architecture. Our study is limited to private last-level

cache, although, we believe these observations hold true for shared last-level cache

architecture.

7. E®ect of Prefetching on Scalability

Many data mining applications exhibit thread-level parallelism, and previous works

have demonstrated that these applications can scale linearly on parallel machines.32

However, we have demonstrated that only a few benchmarks scale linearly when

multiple threads of execution shares the same cores.19 Our work shows the impact of

data sharing and organization of last-level cache architecture can a®ect scalability.

Previous work16 has also pointed out the importance of communication overheads

and resource utilization in the workload scalability.

Aggressive optimizations can change the memory access patterns of parallel

threads, and a®ect scalability. In this section, we examine the e®ect of compiler-

directed prefetching on the scalability of data mining benchmarks on multicore

architecture. Figure 6 shows the relative speedup of data mining applications for

thread numbers one, two, four, and eight, for codes generated with and without

compiler-directed prefetching.

For most applications, such as HOP, RSEARCH, SCALPARC, and APRIORI, we observe

that code without prefetch scales better than with prefetching. At higher thread

count, these applications su®er from increased pressure on the memory hierarchy

due to prefetch instructions which are not always bene¯cial as discussed in Sec. 6.
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We observe exceptions to this general behavior in UTILITY MINE and K-MEANS.

As we discussed in Sec. 6, UTILITY MINE bene¯ts due to prefetch instructions, with

increasing thread count, due to an inherent serialization in its hot-spot. This trans-

lates to better scalability for prefetch-enabled code. In the case of K-MEANS,

Fig. 6. E®ect of prefetch on scalability.
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the dataset ¯ts into last-level cache with increasing thread count and prefetch

instructions are bene¯cial, although their bene¯t decreases with increasing thread

count. Our infrastructure consisted of microprocessor with private last-level cache.

The behavior observed could become even more complex if we use microprocessor

with shared last-level cache, due to increased interaction between threads on com-

mon data in the cache.

To summarize, on multicore processors, aggressive compiler optimizations can

a®ect the scalability in either ways: when it exacerbates resource contention, it is less

scalable. This was demonstrated by increased bus bandwidth utilization in APRIORI

and SCALPARC; when it mitigates resource contention, it is more scalable. This was

observed in the cases of K-MEANS and UTILITY MINE where prefetch instructions aid

access to the memory hierarchy.

These behaviors are hard to determine statically for the compiler and can change

with number of threads used in the multithreaded execution. Recent works28,33,34

have explored hardware- and software-based optimization techniques for managing

threads in multithreaded execution on out-of-order multicore architectures. Similar

optimization techniques might be even more e®ective, on in-order multicore pro-

cessors, for emerging workloads like data mining applications.

8. Related Work

There have been a number of studies in characterizing datamining applications.16�18,35,36

and various works have analyzed the performance of speci¯c categories of data

mining workloads.37�39 Most of the previous studies have been on processors with

out-of-order issue logic. Considering the growing importance of in-order issue pro-

cessors in multicore architectures, our study is based on an advanced in-order pro-

cessor. Mekkat et al.19 provided a comprehensive study of data mining benchmarks

from ¯ve di®erent categories. In addition to memory hierarchy and scalability

characteristics, they also discuss the instruction-level parallelism and dynamic (run-

time) behaviors of these applications. In this paper, we extend this study to present a

detailed analysis of e®ectiveness of compiler optimization techniques on data mining

applications in the context of in-order processor architectures. These compiler op-

timizations gain importance as they play a signi¯cant role in extracting performance

from the relatively simpler hardware of in-order processors. In particular, we look at

the e®ectiveness of compiler-directed prefetching on serial and parallel executions of

data mining benchmarks.

There have been numerous e®orts on adapting data mining algorithms to parallel

platforms. These e®orts have included parallelized algorithms for clustering, classi-

¯cation, and association rule mining; mostly for shared and distributed memory

architectures. Examples include: Refs. 32, 40�44. In this paper, we use the OpenMP

parallelized versions of data mining applications provided by NU-MineBench to

study the e®ectiveness of compiler-directed prefetching on data mining applications
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in shared memory multicore processor systems, which is increasingly becoming the

de-facto standard for modern multiprocessor systems.

Data prefetching is an extensively investigated topic, and Vanderwiel and Lilja45

survey existing work in this area. Data prefetching can be implemented in both

hardware and software. Previous works have shown that hardware prefetching is

e®ective for strided memory accesses.4�7 Hardware prefetching techniques for more

complex patterns are proposed by Refs. 46�49. Previous works on compiler-directed

prefetching for regular memory accesses have been done by Mowry et al.9,10 Luk and

Mowry8 apply compiler-directed prefetching to linked data structures.

The unpredictable responses of data mining applications to compiler-directed

prefetching shows that the compiler cannot make the best decisions statically.

Software-based dynamic optimization techniques have been proposed by previous

works26�29 to supplement the e®ectiveness of compiler-based static optimization

techniques. Data mining applications can potentially bene¯t from adaptive tech-

niques that improve last-level cache performance. This is an important problem and

has been studied extensively and previous works33,34,50 discuss dynamic hardware

solutions to improve the performance of last-level cache on multicore systems.

9. Conclusion

In this paper, we evaluate the e®ectiveness of compiler-directed prefetching, in the

context of in-order multicore architectures, on reducing memory access latencies for

several classes of data mining applications. Our study reveals that although properly

inserted prefetching instructions can often e®ectively reduce memory access latencies

for these applications, compilers are not always able to exploit this potential. In

fact, compiler-directed prefetching is e®ective on some applications, but can

degrade performance dramatically for others. Thus, existing compiler technologies

for inserting prefetch instructions cannot be directly deployed on data mining

applications.

Our investigation on single-threaded data mining applications shows that the

causes for ine®ective prefetching is multi-facet: while cache pollution and resource

contention are the most common causes, some impacts are less obvious and archi-

tecture dependent. For example, prefetching instructions can cause pipeline stalls by

causing exceptions, such as page faults, and saturating the L2 cache load bu®er. For

multithreaded execution on a single chip, the impact of resource contention becomes

more prominent. In almost all applications, prefetching becomes progressively det-

rimental as the number of threads increase. As a result, applications are more scal-

able without compiler-directed prefetching. However, we also observe an exceptional

case where compiler-directed prefetching is able improve scalability by e®ectively

optimizing codes inside a critical section.

In the context of data mining applications, existing compiler-directed prefetch-

ing can become ine®ective if it is unable to accurately estimate the runtime
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behaviors in the presence of (i) complex control °ow and memory access patterns;

(ii) architectural dependent behaviors; and (iii) bottlenecks created by resource

contentions. Thus, dynamic optimization techniques that can monitor the runtime

behaviors of these application and tune prefetching accordingly can potentially

exploit the full power of compiler-directed prefetching.
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