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ABSTRACT
Explosive growth in the availability of various kinds of data in both
commercial and scientific domains have resulted in an unprece-
dented need to develop novel data-driven, knowledge discovery
techniques. Data mining is one such data-centric application. It
consists of methods to discover interesting, nontrivial, and useful
patterns hidden within massive amounts of data. Researchers from
both academia and industry have recognized that the challenges of
data mining applications will help shape the future of multi-core
processor and parallelizing compiler designs. However, relatively
little has been done to understand the performance characteristics
of these applications on modern multi-core processors.

The exponential growth of on-chip resources make it critical to
exploit parallelism at all granularities for improving theperfor-
mance of data mining applications. In this paper, we examinethe
instruction-level, memory-level and thread-level parallelism avail-
able in data mining applications. We observe that (i) data mining
applications have a slightly different instruction mix from SPEC
integer applications, and this difference can potentiallylead to dif-
ferent ILP extraction; ii) although many data mining applications
suffer from data cache miss penalty, similar to SPEC integerap-
plications, different techniques must be developed to enable effec-
tive prefetching due to the existance of complex and irregular data
structures, such as hash tables; (iii) although data miningappli-
cations have large amount of thread-level parallelism, efficient ex-
traction of such parallelism depends on on-chip cache performance;
and (iv) the performance characteristics of data mining applications
can vary at runtime, and thus techniques that dynamically tune the
applications to adapt to such variations are desired.

Categories and Subject Descriptors:C.1.0 [Processor Architec-
tures]: General
General Terms: Thread-level parallelism, Instruction-level paral-
lelism, Cache Performance, Multi-core
Keywords: Data Mining, Performance Characterization, Parelleliza-
tion

1. INTRODUCTION
The phenomenal growth of computer technologies over much of

the past five decades has been fueled by the enormous demand of
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scientific applications for raw computing power. However, the cur-
rent generation of modern applications, both commercial and sci-
entific, is data-centric. Explosive growth in the availability of var-
ious kinds of data in both commercial and scientific domains has
resulted in an unprecedented need to develop novel data-driven,
knowledge discovery techniques. Data mining is one such data-
centric application. It consists of methods to discover interesting,
nontrivial, and useful patterns hidden within massive amounts of
data [13, 32]. Recently, the rate of performance improvement of
data mining applications is much slower than the rate in which the
amount of data collected is increasing [23], thus creating an urgent
need for building efficient data mining applications. Researchers
from both academia and industry have recognized that the chal-
lenges of data mining applications will help shape the future of
multi-core processor and parallelizing compiler designs.For in-
stance, Intel [9] describesrecognition, miningandsynthesisas the
three key components of future computation infrastructures that
handle Tera bytes of data. In addition, many data mining applica-
tions use dynamic programming, as well as backtrack/branch+bound
algorithms in their computation kernel, and these algorithms have
been identified as two of the six key challenges in future parallel
computation systems by Asanovicet al [5].

There have been numerous studies on improving the performance
of data mining applications. Much of these efforts focus on charac-
terizing the performance of specific applications on specific work-
loads [6, 7, 14]; or on optimizing specific data mining algorithms [16,
34, 24, 35, 12, 10, 30, 36, 17, 31, 28]. However, relatively lit-
tle has been done to characterize the performance of diversedata
mining applications on different workloads to examine whether ex-
isting architecture features and compilation optimization technolo-
gies are suitable for emerging data mining applications; and how
to design future microprocessors that can be efficiently utilized by
this emerging workloads.

Recently, as the exponential growth of clock frequency cameto
a halt, microprocessor designers face the challenges of upholding
the exponential performance improvement without an increasing
clock rate, thus exploiting parallelism at all granularities becomes
increasingly critical. Intuitively, data mining applications exhibits
parallelism of different forms, including ILP (instruction-level par-
allelism), DLP (data-level parallelism, e.g. SSE on IA32),TLP
(thread-level parallelism) and MLP (memory-level parallelism). How-
ever, although multi-core environment, with large amount of re-
sources and efficient inter-thread communication capability, seems
to be the ideal environment for extracting such parallelism, the
complex interaction between threads and limited off-chip band-
width complicates the parallelism extraction. In this paper, we
study the performance characteristics of data mining applications
on existing modern multi-core systems using the NU-MineBench [22]



benchmark suite. With respect to this data mining benchmarksuite
we make the following observations:

• Comparing the sequential performance of SPEC Integer and
NU-MineBench applications reveals that the average IPCs of
these two benchmark suites are comparable. However, data
mining applications show potentials for more ILP since there
are fewer store instruction and branch instruction; and these
instructions often hinders the extraction of ILP.

• Comparing the memory performance of the SPEC Integer
and NU-MineBench applications reveals that improving cache
performance is key for both benchmark suites. Of the thir-
teen benchmarks examined, in NU-MineBench, nine of them
spent more than 40% of the CPU cycles stalling for cache
misses. Interestingly, we find that the large input sets are not
the source of the poor memory performance as accesses to
input sets have spatial locality. However, these applications
often construct large and irregular auxiliary data structures,
such as hash tables; and accesses to these data structures
exhibit poor spatial and temporal locality, leading to cache
misses. Although the compiler inserts prefetch instructions
in these programs, these instructions are often ineffective and
in some cases detrimental.

• While quite a few applications have large amount of TLP, not
all applications demonstrated linear scalability on multi-core
processors. The performance of the last-level cache (LLC)
often have significant impact on the scalability . However,
different applications have contradicting requirements on the
organization of LLC as shared or private.

• The performance characteristics of many data mining appli-
cations exhibit variation at runtime. We have not only ob-
served phase behaviors, where the application behave differ-
ently as they enter different functions; but also performance
variation based on the characteristics of the input data. More
interestingly, we have observed that the performance charac-
teristics of the same code segment can change over time as
the application making progress in mining the input data.

It is also worth pointing out that, there also exists a large amount
of DLP in data mining applications. For example, the dot product
operation over large vectors, seen in many applications, can poten-
tially benefit from hardware support for vector operations.How-
ever, in this paper, we will not provide in depth discussion on DLP.

Rest of the paper is organized as follows: Section 2 discusses
related work; Section 3 details our experimental infrastructure and
briefly describes the various data mining algorithms; Section 4 com-
pares SPEC and NU-MineBench from the perspectives of ILP; Sec-
tion 5 analyzes cache performance of NU-MineBench to examine
the availability of MLP; Section 6 presents the scalabilityof paral-
lel data mining applications and discuss whether TLP in datamin-
ing applications can be effectively extracted. We present dynamic
performance characteristic changes in NU-MineBench applications
in Section 7. Finally, we present our conclusions in Section8.

2. RELATED WORK
There have been a number of studies in characterizing data min-

ing applications. Bradford and Fortes [6] analyzed performance
and memory-access behavior ofdecision tree inductionbased data
mining algorithms. Ghotinget al [11] analyzedfrequent itemset
miningandclusteringalgorithms for their performance and mem-
ory behaviors. Chenet al [8] conducted a performance scalability

study for data mining workloads, but was limited to bioinformatics
applications.

Most of the previous works either focus on one particular class
of data mining applications likeclassification, clusteringor is lim-
ited to one particular characteristic like memory hierarchy or scal-
ability. In this paper, we provide a comprehensive study of data
mining benchmarks from five different categories. In addition to
memory hierarchy and scalability characteristics, we alsodiscuss
the instruction-level parallelism and dynamic(run-time)behaviors
of these applications.

Liu et al [20] introduced and performed the initial analysis for
MineBench, the predecessor to NU-MineBench. The analysis fo-
cused on the I/O overhead and synchronization costs. Berkinet
al [23] show that data mining applications have distinct behaviors
in comparison to SPEC [29], MediaBench [18] and TPC-H [4], but
they provide relatively little details on the underlying architecture
support.

Shaw [26], Liet al [19] present a detailed analysis of the working
sets of data mining applications. They show that increasingcache
size alone cannot improve performance and highlight the benefits
of simple hardware prefetching. Our study analyzes the complex
auxiliary data structures created by the data mining applications,
their irregular access and observe that simple prefetchingmech-
anisms will not be sufficient in this scenario. We point out the
need for more sophisticated prefetching mechanisms. Jibaja and
Shaw [15] analyze the applicability of existing CMP approaches to
data mining applications. They show that the applications exhibit
different levels of data sharing and this calls for flexible cache con-
figurations. In this paper we confirmed these results on two off-the-
shelf CMP processors with different last-level cache organizations.

There have been numerous efforts on adapting data mining al-
gorithms to parallel platforms. These efforts have included par-
allelized algorithms for clustering, classification, and association
rule mining; mostly for shared and distributed memory architec-
tures. Examples include: Joshiet al [16], Zaki et al [34, 35],
Parthasarathyet al [24], Han et al [12], Foti et al [10] and Stof-
fel et al [30]. In this paper, we study the scalability performance of
data mining applications on shared memory multi-core processor
systems, which is increasingly becoming thedefactostandard for
modern multi-processor systems.

3. EVALUATION INFRASTRUCTURE
We study the performance characteristics of data mining appli-

cations using the NU-MineBench [22] benchmark suite. We eval-
uated thirteen out of seventeen benchmarks in this suite, omitting
BAYESIAN, BIRCH, SNP and GENENET due to difficulties encoun-
tered in compilation. All benchmarks are written inC/C++, and
all, with the exception of AFI, GETI and ECLAT, are parallelized
with OpenMP directives. The benchmarks are compiled with-O3
using the Intel C/C++ compiler version 11.0. Taking advantage of
the extensive hardware performance counters available on Itanium
processors, these applications are evaluated on a 8-core Itanium-
based CMP with dual-core Intel Itanium-2 [1] processors running
at 1.6GHz. Each of the 8 cores have a 16KB L1I, a 16KB L1D
cache, a 1MB L2I, a 256KB L2D cache and a 9MB unified private
last-level cache. To compare the parallel performance of multi-
core processors with shared and private last-level on-chipcache,
we also evaluate the parallel execution of these applications on a
8-core x86-based CMP with quad-core Intel Xeon [2] processors
running at 2.66 GHz. The x86 based machine has two processors,
each containing two dual-core dies, and cores in the same dieshare
a 4MB L2 cache. Each core has 32KB L1 cache.

The PerfMon [25] library is used to manage the hardware perfor-



mance counters. Stalls in the Itanium pipeline back-end aredivided
into five mutually exclusive categories. Most of the stalls caused by
execution units waiting for operands are due to cache misses. We
refer to them asCache stalls in our figures. Stalls due to recircu-
lation of data access requests from L1D due to TLB or L2D OzQ
being full is referred to here asRecirculation stalls. Flush
corresponds stalls caused by pipeline flushes. In our case, almost
all such stalls are caused by branch mis-predictions.RSE corre-
sponds to stalls caused by the Register Stack Engine, which is neg-
ligible in all applications.FE corresponds to stalls caused by the
pipeline front end.Pin [21], a binary instrumentation tool, is used
to collect dynamic instruction profile.

The data mining applications we analyzed are divided into six
categories: association rule mining, classification, clustering, opti-
mization, structure learning, and error-tolerant itemsetmining.
Association Rule Miningapplications take a database of item trans-
actions as input, and identify frequently-occurring itemsets in the
transactions. Among the benchmarks evaluated, APRIORI, UTIL -
ITY M INE and ECLAT belong to this class. APRIORI identifies all
frequently occurring itemsets based on theapriori principle. Can-
didate itemsets of lengthk are generated from itemsets of length
k-1. Frequency of candidate itemsets are calculated and the ones
which are infrequent are then pruned to generate frequent itemsets
of lengthk. The implementation uses a hash tree data structure to
store the generated candidate itemsets. UTILITY M INE algorithm
is similar to APRIORI except that now each itemset is also given a
”utility” value and those with higher utility are identified. ECLAT
represents transactions by vertical transaction ID lists and a candi-
datek itemset is generated by intersecting two (k-1)-itemsets that
have a common prefix. The program partitions the search space
into small manageable chunks thereby reducing the pressureon the
memory system.
Classification workloads take as input a training dataset which is
used to develop a predictive model which is then used to classify
unlabelled records. SCALPARC is a parallel and scalable version
of the decision tree classification algorithm. The data is classified
by recursively splitting the records on the attribute whichleads to
the best split. The process is continued until all records ina par-
tition fall under the same class. The implementation buildsa tree
based decision model and uses a hash table to make the computa-
tion more efficient. RSEARCHis a RNA sequencing program which
finds homologous RNA sequences by searching a gene database.
The RNA sequence being searched for is built using a context-free
grammar and a local alignment algorithm is used to find homol-
ogous RNAs in the database. Support Vector Machines- Recur-
sive Feature Elimination (SVM-RFE) classifies records by select-
ing specific features. Records are eliminated recursively from a set
of active variables based on some support criteria.
Clustering aims at discovering groups of similar objects from a
database to expose the underlying data distribution. K-MEANS di-
vides the input data by assigning them to their closest cluster center.
The kernel of the program is the Euclid distance computationfunc-
tion. The K-means algorithm assigns a point in the database to a
single cluster. But FUZZY K-MEANS relaxes the condition by al-
lowing a point to be a member of more than one cluster. The third
program in this category is HOP, a density based clustering algo-
rithm. The algorithm forms clusters by assigning particlesto its
densest neighbor.
Error Tolerant Itemset Mining finds sets of items where, infor-
mally, most of the items commonly occur together. These algo-
rithms are useful for finding patterns that are a relaxation of fre-
quent itemsets or for finding frequent itemsets in noisy data. This
category includes AFI and GETI. The algorithms used in these
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Figure 1: Dynamic instruction mix comparison.

programs are similar to the ones used in association rule mining.
SEMPHY is the onlyStructure Learning workload evaluated by
us. It is used to find species that are genetically related. Phylo-
genetic trees are used to represent genetic relationships in species,
where closely related animals are in nearby branches. SEMPHY
searches for maximum likelihood phylogenetic trees using the struc-
tural expectation maximization algorithm.
Optimization programs identify similar regions in DNA, RNA and
protein sequences. PLSA, the only benchmark in this category,
uses the dynamic programming paradigm based on the Smith and
Waterman algorithm to find similar regions between two sequences.

4. PERFORMANCE CHARACTERISTICS:
SPEC VS NU-MINEBENCH

For years, the SPEC CPU [29] has been widely accepted by com-
puter architects as the benchmark for measuring CPU performance.
Many architectural features and compiler optimization techniques
that aim to improve instruction-level parallelism (ILP) are designed
with the performance characteristics of SPEC CPU in mind. In
this section, we analyze the differences between the SPEC Inte-
ger [29] benchmarks with data mining benchmarks [22] in terms of
dynamic instruction mix, cach misses, effect of software prefetch-
ing and execution stall cycle breakdown. NU-MineBench programs
are mostly control intensive like SPEC Integer as hence we com-
pare them, rather than with SPEC FP which is loop intensive.

Figure 1 shows the dynamic instruction mix of the SPEC Inte-
ger benchmark suite and NU-MineBench benchmark suite. These
two benchmark suites show similar trends, but with the following
distinctions: SPEC Integer applications have 54% more store in-
structions than NU-MineBench programs, but have 16% fewer load
instructions. Data mining applications typically use the input data
to build temporary data structures. These data structures are then
traversed many times with a small number of updates. This access
pattern leads to more loads but fewer stores. SPEC programs also
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(b) NU-MineBench Programs

Figure 2: CPU Cycles breakdown.

have 45% more branch instructions as compared to NU-MineBench
applications.

Figure 2 shows that both SPEC Integer and NU-MineBench have
similar characteristics on the average stall cycle distribution, de-
spite the differences in instruction mix and in cache miss rate. Nine
out of the thirteen data mining programs spend more than 40% time
stalling on cache misses. We discuss the memory behavior of data
mining workloads in detail in Section 5.

The number of L2 and L3 misses per thousand instructions for
SPEC and NU-MineBench programs are summarized in Figure 3.
The average number of cache misses per thousand instructions for
the two benchmark suites are similar: L2 cache misses per thousand
instructions is 34% higher for SPEC Integer; and L3 cache miss
per thousand instructions is same for both benchmark suites. In
NU-MineBench, four benchmarks have a large number of L2 cache
miss.

Although many data mining applications process large inputsets,
access to input data typically exhibits good locality and does not
cause large number of cache misses. Data mining benchmarks gen-
erate large, complex auxiliary data structures such as hashtrees.
Accesses to these structures are very irregular and difficult to prefetch
and cause frequent cache misses.

4.1 Discussion
We compare NU-MineBench to SPEC Integer benchmarks since

both applications contain branch intensive codes and have alarge
number of irregular memory accesses. Although there is a differ-
ence in the dynamic instruction mix between the suites, the cache
miss rates and stall distributions are similar. Hence existing pro-
cessors built with SPEC workloads in mind should be able to per-
form well on data mining workloads. Data mining applications
have fewer store instructions than SPEC programs, and hencethere
are more instruction scheduling opportunities resulting in more ILP
that can be exploited. Therefore, existing processors built to ex-
ploit ILP in SPEC CPU benchmarks should be able to exploit more
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Figure 3: Cache Miss Rate comparison.

ILP from data mining applications. But there are some key dif-
ferences in data mining applications that present challenges and
novel opportunities in processor design. Processors builtfor data
mining applications can have smaller load-store queues than cur-
rent generation processors, since there are fewer store instructions
to commit in data mining applications. This can potentiallyim-
prove the power efficiency of processors as load-store queues typ-
ically consume a lot of power. Processors can also afford to have
smaller write buffers for data mining applications for the same rea-
son. Data mining applications generate and work with temporary
data structures which are deleted during the course of the program.
Hence any writes made to them need not be committed to memory
as it will be useless. Identifying such writes and not committing
to memory would increase memory performance significantly.By
eliminating unnecessary writes, fewer instructions will be executed
leading to faster execution times.

5. MEMORY HIERARCHY PERFORMANCE
Improving cache performance is key for many data mining ap-

plications, since nine out of the thirteen benchmarks we examined
spent over 40% of total execution cycles stalling as a resultof cache
misses. Our analysis reveals that, although many data mining appli-
cations process large input sets, accesses to the input datausually
exhibit spatial locality and do not cause cache misses. However,
these applications often construct large and irregular auxiliary data
structures, such as hash trees [32]. Accesses to these data structures
exhibit poor locality due to the use of indirect accesses andpoint-
ers. Although software-controlled prefetch can potentially reduce
cache misses by fetching data into cache before it is used, for many
data mining applications, either no prefetch instructionsare gener-
ated by the compiler or the compiler-inserted prefetch instructions
are ineffective, even with aggressive optimizations. Thisis not only
because the underlying data structure is complex and pointer-based,
but also because accesses to these data structures are embedded in
complex control flow.



-50

 0

 50

 100

 150

 200

 250

 300

 350

 400

pe
rlb

en
ch

bz
ip2 gc

c

m
cf

go
bm

k

hm
m

er

sje
ng

lib
qu

an
t

h2
64

re
f

om
ne

t

as
ta

r

xa
lan

c

%
 va

ria
tio

n 
du

e 
to

 p
re

fe
tch

-2.5 -6.25 -6.1

84

-3

16

-1.6

393

-4.3

0 0

-3.2

(a) SPEC CPU2006 Integer Benchmarks

-30

-20

-10

 0

 10

 20

 30

AF
I

F-
Km

ea
ns

Ut
ilit

y_
M

ine

Ap
rio

ri

Km
ea

ns

SE
M

PH
Y

HO
P

Sc
alP

ar
C

Rs
ea

rc
h

GE
TI

SV
M

_R
FE

EC
LA

T

PL
SA

%
 va

ria
tio

n 
du

e 
to

 p
re

fe
tch

-17

-3.2

23.2

-11.7

12.5

0 0

23.3

-6

0

4.6

0

-24

(b) NU-MineBench Programs

Figure 4: Effect of compiler inserted prefetch instructions.

Figure 4 shows the impact of compiler-inserted prefetch instruc-
tions on NU-MineBench and SPEC Integer applications. The graph
shows the percentage change in total execution cycles for execu-
tions compiled with compiler inserted prefetch instructions over
the executions without. In SPEC, a few applications, such asMCF,
LIBQUANTUM and HMMER, benefit significantly from compiler-
inserted prefetch. while others are not significantly affected. In
NU-MineBench, on the other hand, the effect of compiler inserted
prefetch instructions is more dramatic. While some applications,
such as UTILITY -M INE, K-MEANS and SCALPARC, benefit sig-
nificantly from prefetch instructions, many suffer significant per-
formance degradation. These variations indicate that there is a need
for better static and dynamic optimization techniques for generat-
ing compiler-inserted prefetches. In the rest of this section, we
provide a case-by-case analysis of the cache performance ofeach
application.

SCALPARC, a classification benchmark, stalls on 57% of CPU cy-
cles due to cache misses. The program has a memory foot-
print that is twice its input data size to store a model based on
the training data. The model is constructed as a large, com-
plex tree-based data structure. Model construction is where
most of the time is spent as classifying the input dataset is
not computationally intensive. During the model building
phase, the program builds lists for each attribute of the input
data sorted by the attribute value. At each node of the deci-
sion tree, a hash table is used to partition these attribute lists
between the child nodes. The hash table is similar in size
with the number of records, containing millions of entries,
and does not fit in the cache. By examining the addresses
accessed by the program it is clear that accesses to the hash
table are very irregular. Since the hash table is very large,
and accesses to it are highly irregular, it leads to frequent
cache misses. When the program is parallelized using MPI,
each processor gets a part of the hash table which fits in the
cache, but when OpenMP is used to parallelize the program

all threads read from a single copy of the hash table which
does not fit in cache leading to poor memory performance.
The compiler does not insert prefetch instructions for this
program as the element of the hash table accessed cannot be
predicted.

SVM-RFE, another classification benchmark, shows the highest
stall percentage. It stalls for 69% of total CPU Cycles, which
is almost entirely due to recirculation stalls. The algorithm
represents the data set as points in an n-dimensional plane
and splits the data points into different classes by searching
for an optimal splitting hyper-plane. The optimization ker-
nel makes use of Math Kernel Library, to compute vector
dot product, where each vector is a one dimensional float-
ing point array representing the coordinates of the point. The
program stalls when loading data from the vectors for dot
product computation. The assembly code generated for the
library, revealed that the prefetch instructions generated by
the compiler were not very effective.

APRIORI and UTILITY M INE are association rule mining programs
which have similar behavior. APRIORI stalls for 66% of to-
tal cycles, the majority of which are caused by cache misses
which account for 53% of total CPU cycles. UTILITY M INE

stalls for 62% of the total cycles, almost all of which are
cause due to cache misses. The programs try to find items
that occur together frequently in a large group of item trans-
actions. Both programs use a hash tree to store subsets of
the input transactions. The tree is then traversed to count the
number of occurrences of each subset in the transaction data.
However, the hash tree is too large to fit into the cache and
exhibits poor locality. Hence, repeated accesses of the hash
tree data structure generate a large number of cache misses.
Also, because of the complex control flow in thehot-spot,
compiler does not insert prefetch instructions which further
degrades the performance.

AFI, an error tolerant itemset mining algorithm, is very similar to
Apriori and finds frequent itemsets in noisy data. The pro-
gram has a load instruction embedded in a double nested
loop, which causes a large number of cache misses. The
static compiler inserted a prefetch instruction in the inner
loop to hide this latency. However, the inner loop has a small
iteration count; and thus this prefetch is not only ineffective,
but actually causes performance degradation. Moving the
prefetch instruction to the outer loop improves the perfor-
mance of this application by more than 30%. It is difficult for
the compiler to identify this optimization opportunity since
the outer loop contains conditional branches.

HOP, a clustering algorithm stalls for 45% of total CPU cycles,
of which cache misses account for 35% of the CPU cycles.
In this application, the instructions were scheduled poorly
which could not effectively hide the latency of load instruc-
tions. The compiler failed to unroll certain loops which were
inside control statements. Since the compiler was not sure if
the loop would be executed at run time it was conservative
and did not unroll these loops. By manually unrolling them,
the performance of the program improved by 14%. K-means
and Fuzzy K-means, both clustering applications, also stalled
for 45% and 60% of total CPU cycles respectively. Cache
miss penalty accounted for 41% of total cycles in K-means,
while it accounted for 56% of total cycles in Fuzzy K-means.



 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

Re
lat

ive
 S

pe
ed

up

Number of Threads

Fuzzy K-means
K-means

HOP
RSearch

ScalParC
SVM-RFE

Semphy

(a) 8-core Itanium system

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

Re
lat

ive
 S

pe
ed

up

Number of Threads

Fuzzy K-means
K-means

HOP
RSearch

ScalParC
SVM-RFE

(b) 8-core x86 system

Figure 5: Scalability of NU-MineBench on multi-core systems.

PLSA, a gene sequence alignment algorithm, contains compiler-
inserted prefetch instructions, but removing these prefetch
instructions actually improves performance by 24%. In this
application, the compiler identified linear accesses to large
array-based data structures and decided to insert prefetching
instructions. However, due to complex branch behaviors, at
runtime the application only accesses a small fraction of the
array. Thus most of the prefetched data is useless, and the
associated overhead degrades program performance. These
instructions would have been effective, if the program tra-
versed through a large portion of the array. Unfortunately,
the compiler is unable to determine the correct access pat-
tern and make the proper decisions statically.

6. EXTRACTING THREAD-LEVEL PARAL-
LELISM ON MULTI-CORE PROCESSORS

Prior works [16] have shown that data mining applications are
able to scale to 128 processing element on distributed-memory multi-
processor systems using MPI. For applications in the NU-MineBench
suite, ten out of the thirteen benchmarks that we have evaluated
have been explicitly parallelized using OpenMP directives[23],
and most of these applications are able to scale linearly on shared-
memory multi-processors systems with up to 8 processors. While
it is clear that these applications exhibits high level of TLP, it is not
clear whether such parallelism can be extracted on multi-core pro-
cessors that are becoming increasingly common. While multi-core
processors have abundant resources and efficient inter-thread com-
munication, we must face the following challenges when extract-
ing parallelism on multi-core processors: (i) sharing of on-chip re-
sources may cause contention among threads. For example, shared
caches may lead to complex thrashing/prefetching behaviors; (ii)
limited off-chip bandwidthmay become the new performance bot-
tleneck. While the computing power of modern multi-core proces-
sors increases dramatically with each generation of technology, the
increase in off-chip bandwidth cannot scale at the same rate. This

constraint may become the new performance bottleneck.
We studied the parallel performance of seven out of ten bench-

marks that have OpenMP directives in the benchmark suite. APRI-
ORI, UTILITY M INE and PLSA are omitted due to compilation
errors. Our evaluation is conducted on two distinct CMP machines
as described in Section 3. The implementation of SVM -RFE in
NU-MineBench is overly synchronized, thus is unable to scale at
all. However, previous work [8] has shown that other implementa-
tions of SVM -RFE can potentially scale better. Thus, we exclude
this benchmark from further discussions. SEMPHY scales linearly
only up to 2 threads and shows small performance improvement
with 4 and 8 threads. Close examination reveals that SEMPHY has
unbalanced workload between the threads. In many segments of
execution, only one thread is active. The complete results are avail-
able in the Figure 5.

We use two platforms to evaluate scalability, as described in Sec-
tion 3. The most notable difference between these two architectures
is the organization of the LLC: Itanium-based multi-core processor
has private on-chip LLC, while on the Intel Xeon-based multi-core
processor, two cores that are located on the same die share the same
LLC, but cores on different chips do not share cache.

In terms of scalability, the two architectures show similartrends:
HOP and RSEARCHare able to scale linearly upto 8 threads; FUZZY

K-MEANS, SCALPARC and SEMPHY are able to scale only up to
4 threads; K-MEANS is able to scale linearly upto 8 cores only
on the Itanium-based system. For SCALPARC the scalability issue
is mainly affected by cache performance. On the 8-core Itanium-
based system, as the number of threads increases, the percentage
of total execution cycle stalls due to cache miss also increases sig-
nificantly. When number of threads increases from four to eight,
no performance improvement is observed, but stall cycles due to
cache miss penalty increases by 50%. When the number of threads
changes from 1 to 2 to 4, and finally to 8, the total percentage of
stall cycles increases from 46% to 48% to 54% and to 74%. The
major contributor to this is the EXE stall cycles, mainly dueto
cache misses, which increases from 27% to 27% to 31% and finally
to 48%. Stalls due to recirculation also contribute to stallcycle in-
crease, but is less significant. It only increases from 13% to13% to
15% and finally to 20%. The most significant increase occurs when
the number of threads increases from four to eight. The number
of cache misses also increases correspondingly. While not scaling
linearly, SCALPARC is able to scale better on the Intel Xeon-based
multi-core system. In particular, the number of cache misses stays
the same even as the number of threads increases. K-MEANS, on
the other hand, shows the opposite behavior as SCALPARC. On the
Itanium-based multi-core system, when the number of threads in-
creases from four to eight, the cache miss rate decreases by 36%.
However, on the Intel Xeon-based multi-core system, the cache
miss rate remains constant.

The key difference between SCALPARC and K-MEANS is that
there is a large amount of shared data between threads in SCAL -
PARC, but very little in K-MEANS. Therefore, K-MEANS is able to
scale better on systems with private last-level cache; while SCAL -
PARC is able to scale better on systems with shared last-level cache.
For K-MEANS, on shared LLC, data brought in by one thread can
potentially over-write data brought in by other threads, but cannot
be used by other threads; on private LLC, data brought in by one
thread does not interfere with data brought in by another thread. For
SCALPARC, on private LLC, data brought in by one thread cannot
be used by other threads; thus shared data must be brought into the
cache multiple times causing the cache miss rate to increase. On
shared LLC, shared data brought in by one thread can be used by
others, thus cache miss rate does not increase with the number of



threads.

7. DYNAMIC PERFORMANCE CHARAC-
TERISTICS VARIATIONS

The results presented in this paper so far make two simplifica-
tions. First, it is assumed that the behaviors of the programstay
the same throughout the entire duration of the execution, thus we
present average performance measurement. Second, it is assumed
that the performance characteristics of data mining remainthe same
over all input sets, thus we only present the performance charac-
teristics for one input set. While these two simplificationsdo not
affect the accuracy of the results for most applications, wehave
observed that the performance characteristics change for some ap-
plications as (i) the program enters different code segments; (ii)
different input sets are used; and (iii) the same code segment make
progress in mining the data.

Phases behaviors [27], often refer to the fact that the program
behaviors change as the program enters different segments of code,
have been reported in SPEC Integer applications.

While phase behavior is common in both SPEC and NU-MineBench,
data mining applications demonstrated additional dynamicperfor-
mance characteristics variations that we will be focusing for the
rest of this section.

7.1 Input Dependent Performance Variations
We refer to the fact that some applications behave differently

when different input sets are given as input sensitive behaviors.
Association rule mining applications demonstrated such input sen-
sitivity. We evaluated the performance characteristics ofAPRIORI

with three different input sets: (i) the input data set released with
NU-MineBench [22]; (ii) anonymized traffic accident data; and (iii)
data generated from the IBM Quest data generator [3]. The latter
two input sets are from the University of Helsinki [33]. We have not
only observed different code segments emerge as the performance
hot spots, but also changes in the stall cycle breakdown as the input
sets change. The total percentage of execution time stalling, for the
three input sets are 67%, 50% and 88%, respectively. A detailed
examination of the breakdowns of stall cycles reveals even more
differences: stalls due to cache misses correspond to 42%, 16%
and 79% of total cycles, recirculation stalls correspond to14%,
22% and 5% of total cycles, and stalls due to branch mispredic-
tion correspond to 8%, 10% and 2% of total cycles. One reason
for such performance variation is the fact that different segments of
code emerge as thehot-spotswith different input sets. APRIORIhas
two phases of execution: candidate generation and support count-
ing. For the first two input sets, support counting for the candidate
itemsets is thehot-spot, whereas, for the third input set, candidate
itemset generation is thehot-spot.

These performance characteristic variations are not simply re-
lated to the input set sizes, rather, other factors like number of items
in the input set, average transaction size, number of transactions
etc., also have significant influence. For instance, input sets with
more items tend to generate more candidate patterns, especially
in the initial stages of the algorithm where itemsets of relatively
small size are being evaluated. Input set characteristics are not the
only input parameter that influence the behavior of the program.
The support level in association rule mining applications defines
the minimum number of times an itemset has to occur in the set of
transactions to be considered frequent. The support level also influ-
ences the program behavior. In APRIORI, at higher support values,
branch misprediction becomes a significant issue, contributing to
more than 25% of stalls, whereas at lower support value, although

the number of stalls due to branch misprediction remain the same,
cache miss stalls become a more dominant bottleneck. The number
of itemsets generated by the algorithm increases drastically at low
support values, increasing the size of the hash tree used to store
the itemsets. Hence with lowering support the hash tree generated
by the program can no longer fit in the cache which increases the
number of cache misses.

More interestingly, we observe that some compiler optimiza-
tions also behave differently as the input set changes. In APRIORI,
prefetch instructions are inserted by the compiler in the support
counting routine. However, these prefetch instructions are only ef-
fective for data set 1, but rather degrade performance for data set 2.
These types of behaviors suggest that there may not exist a single
optimal compilation strategy, rather dynamic optimizers that ob-
serve the behaviors of the application at runtime and re-optimize
the code can potentially outperform static ones.

7.2 Time Dependent Performance Variations
Another form of dynamic performance variation is observed in

data mining applications: the performance characteristics of the
same code segment changes over time while operating on the same
input set. APRIORI, for example, exhibits time dependent perfor-
mance variation, but only on one of the three input sets, the input
set released as part of the NU-MineBench benchmark suite. The
dynamic execution cycle breakdown on this input set is shownin
Figure 6. While the program executes the same code segment, in
the first segment of the execution, LLC miss penalty is the keyper-
formance bottleneck, but during later segment of execution, recir-
culation stalls become the new performance bottleneck. APRIORI

searches frequent itemsets in an input set, and the lengths of the
searched itemsets increase as the application makes progress. The
algorithm is able to eliminate some possible candidate itemsets, and
eventually the search space fits in the LLC and cache miss penalty
ceases to be the bottleneck.

8. CONCLUSIONS
Increasing emphasis on novel data-driven, knowledge discov-

ery techniques have called for a re-evaluation of the architectural
features and software optimization techniques employed incurrent
computing systems. In this paper, we conduct a thorough perfor-
mance analysis of NU-MineBench, a data mining benchmark suite
that includes applications from several important categories of data
mining such clustering, classification, association rule mining etc.
We characterize the performance characteristics in terms of differ-
ent forms of parallelism, such as ILP, MLP and TLP and found the
following:

• the IPC of data mining applications is comparable to SPEC
Integer applications. However, data mining applications show
potential for more ILP since with fewer store and branch in-
structions, data mining applications have more potential for
instruction scheduling.

• extracting memory-level parallelism is key for improving the
performance of data mining applications, since nine out of
the thirteen benchmarks examined spent more than 40% of
the CPU cycles stalling for cache misses. However, data min-
ing applications build large and irregular auxiliary data struc-
tures, such as hash tables to store runtime information; and
existing prefetching techniques are inadequate with such data
structures. Thus, developing more sophisticated prefetching
techniques targeting such auxiliary data structures is keyfor
improving MLP.
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Figure 6: Run-Time Profile of APRIORI. Each bar represents the cycle breakdown for a 30-second interval.

• While quite a few applications have large amount of TLP, not
all applications demonstrated linear scalability on multi-core
processors. Our experiments suggest that the performance of
the last-level on-chip cache is key. However, different appli-
cations have contradicting requirements for the organization
of the LLC: applications with shared data prefer shared LLC,
while applications with little shared data prefer private LLC.
Our observation suggests that dynamic cache partition tech-
niques may be desirable.

• Several different types of performance characteristics varia-
tion exist: the performance characteristics of an application
vary as the program enters different code segments and as the
input set changes. Furthermore, performance characteristics
of the same code segment can also change over time. More
interesting, the effectiveness of some compiler optimizations
change as the performance characteristics vary. Thus, dy-
namic optimizers, that observe application performance char-
acteristics and re-optimize the application to adapt to such
variation are desirable.
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