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ABSTRACT

Explosive growth in the availability of various kinds of dah both
commercial and scientific domains have resulted in an ueprec
dented need to develop novel data-driven, knowledge disgov
techniques. Data mining is one such data-centric appbicatit
consists of methods to discover interesting, nontrivia aseful
patterns hidden within massive amounts of data. Researfitoen
both academia and industry have recognized that the clyakbeof
data mining applications will help shape the future of matire
processor and parallelizing compiler designs. Howevéatively
little has been done to understand the performance chasdicte
of these applications on modern multi-core processors.

The exponential growth of on-chip resources make it clitica
exploit parallelism at all granularities for improving therfor-
mance of data mining applications. In this paper, we exarttire
instruction-level, memory-level and thread-level paiidm avail-
able in data mining applications. We observe that (i) dataimgi
applications have a slightly different instruction mix fimtcSPEC
integer applications, and this difference can potentiaiad to dif-
ferent ILP extraction; ii) although many data mining apations
suffer from data cache miss penalty, similar to SPEC integer
plications, different techniques must be developed to leneffiec-
tive prefetching due to the existance of complex and irragdéta
structures, such as hash tables; (iii) although data miajgi-
cations have large amount of thread-level parallelismgieffi ex-
traction of such parallelism depends on on-chip cache pegnce;
and (iv) the performance characteristics of data minindiegions
can vary at runtime, and thus techniques that dynamicatig the
applications to adapt to such variations are desired.

Categories and Subject Descriptors:C.1.0 [Processor Architec-
tures]: General

General Terms: Thread-level parallelism, Instruction-level paral-
lelism, Cache Performance, Multi-core

Keywords: Data Mining, Performance Characterization, Parelleliza-

tion
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scientific applications for raw computing power. Howevhe tur-
rent generation of modern applications, both commercidl soi-
entific, is data-centric. Explosive growth in the availapibf var-
ious kinds of data in both commercial and scientific domaias h
resulted in an unprecedented need to develop novel datandri
knowledge discovery techniques. Data mining is one such-dat
centric application. It consists of methods to discoveeri@sting,
nontrivial, and useful patterns hidden within massive ant®wf
data [13, 32]. Recently, the rate of performance improvenén
data mining applications is much slower than the rate in tvite
amount of data collected is increasing [23], thus creatimgrgent
need for building efficient data mining applications. Reskars
from both academia and industry have recognized that the cha
lenges of data mining applications will help shape the fitof
multi-core processor and parallelizing compiler desigi®r in-
stance, Intel [9] describascognition, miningandsynthesisas the
three key components of future computation infrastructutet
handle Tera bytes of data. In addition, many data miningiegpl
tions use dynamic programming, as well as backtrack/bretmind
algorithms in their computation kernel, and these algorithave
been identified as two of the six key challenges in future lfra
computation systems by Asanowtal[5].

There have been numerous studies on improving the perfaenan
of data mining applications. Much of these efforts focus lbarac-
terizing the performance of specific applications on spewifirk-
loads [6, 7, 14]; or on optimizing specific data mining al¢fums [16,
34, 24, 35, 12, 10, 30, 36, 17, 31, 28]. However, relativety li
tle has been done to characterize the performance of didatse
mining applications on different workloads to examine ileetex-
isting architecture features and compilation optimizatechnolo-
gies are suitable for emerging data mining applicationst aow
to design future microprocessors that can be efficientlizad by
this emerging workloads.

Recently, as the exponential growth of clock frequency ctome
a halt, microprocessor designers face the challenges afdiply
the exponential performance improvement without an irgingp
clock rate, thus exploiting parallelism at all granul@itibbecomes
increasingly critical. Intuitively, data mining applidgans exhibits
parallelism of different forms, including ILP (instructidevel par-

The phenomenal growth of computer technologies over much of allelism), DLP (data-level parallelism, e.g. SSE on IA32),P
the past five decades has been fueled by the enormous demand othread-level parallelism) and MLP (memory-level parigia). How-
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ever, although multi-core environment, with large amouintes
sources and efficient inter-thread communication capgghsieems
to be the ideal environment for extracting such parallelishe
complex interaction between threads and limited off-chemds
width complicates the parallelism extraction. In this papee
study the performance characteristics of data mining egftins
on existing modern multi-core systems using the NU-Minefbd22]



benchmark suite. With respect to this data mining benchrsaitk
we make the following observations:

study for data mining workloads, but was limited to bioinfatics
applications.
Most of the previous works either focus on one particulasla

e Comparing the sequential performance of SPEC Integer and of data mining applications likelassification, clusteringr is lim-

NU-MineBench applications reveals that the average IPCs of

ited to one particular characteristic like memory hiergrohscal-

these two benchmark suites are comparable. However, dataability. In this paper, we provide a comprehensive study athd

mining applications show potentials for more ILP since ¢her
are fewer store instruction and branch instruction; andehe
instructions often hinders the extraction of ILP.

Comparing the memory performance of the SPEC Integer
and NU-MineBench applications reveals that improving each
performance is key for both benchmark suites. Of the thir-
teen benchmarks examined, in NU-MineBench, nine of them
spent more than 40% of the CPU cycles stalling for cache
misses. Interestingly, we find that the large input sets ate n
the source of the poor memory performance as accesses t
input sets have spatial locality. However, these appbcati
often construct large and irregular auxiliary data strresy

such as hash tables; and accesses to these data structur

exhibit poor spatial and temporal locality, leading to aach
misses. Although the compiler inserts prefetch instruntio
in these programs, these instructions are often ineffeetid

in some cases detrimental.

While quite a few applications have large amount of TLP, not
all applications demonstrated linear scalability on modtie
processors. The performance of the last-level cache (LLC)
often have significant impact on the scalability . However,
different applications have contradicting requirememtste
organization of LLC as shared or private.

The performance characteristics of many data mining appli-
cations exhibit variation at runtime. We have not only ob-
served phase behaviors, where the application behave-diffe
ently as they enter different functions; but also perforogan
variation based on the characteristics of the input dataeMo
interestingly, we have observed that the performance chara

(0)

mining benchmarks from five different categories. In additio
memory hierarchy and scalability characteristics, we disouss
the instruction-level parallelism and dynamic(run-tinbehaviors
of these applications.

Liu et al [20] introduced and performed the initial analysis for
MineBench, the predecessor to NU-MineBench. The analysis f
cused on the I/O overhead and synchronization costs. Betkin
al [23] show that data mining applications have distinct bébrav
in comparison to SPEC [29], MediaBench [18] and TPC-H [4}, bu
they provide relatively little details on the underlyingchitecture
support.

Shaw [26], Liet al[19] present a detailed analysis of the working
sets of data mining applications. They show that increasauge

&jize alone cannot improve performance and highlight thefitsn

of simple hardware prefetching. Our study analyzes the ¢@mp
auxiliary data structures created by the data mining apfidins,
their irregular access and observe that simple prefetcinagh-
anisms will not be sufficient in this scenario. We point ou th
need for more sophisticated prefetching mechanisms. aJdnagl
Shaw [15] analyze the applicability of existing CMP apptoegto
data mining applications. They show that the applicatiotshet
different levels of data sharing and this calls for flexikdelee con-
figurations. In this paper we confirmed these results on tfvthef
shelf CMP processors with different last-level cache ocizgtions.
There have been numerous efforts on adapting data mining al-
gorithms to parallel platforms. These efforts have inctugear-
allelized algorithms for clustering, classification, arsb@ciation
rule mining; mostly for shared and distributed memory &gt
tures. Examples include: Joskt al [16], Zaki et al [34, 35],
Parthasarathet al [24], Hanet al [12], Foti et al [10] and Stof-
fel et al[30]. In this paper, we study the scalability performance of

teristics of the same code segment can change over time asdata mining applications on shared memory multi-core Bsoe

the application making progress in mining the input data.

Itis also worth pointing out that, there also exists a lang@ant
of DLP in data mining applications. For example, the dot picid
operation over large vectors, seen in many applicatiomspogen-
tially benefit from hardware support for vector operatiohtow-
ever, in this paper, we will not provide in depth discussiorDd.P.
Rest of the paper is organized as follows: Section 2 dissusse
related work; Section 3 details our experimental infrasttrce and
briefly describes the various data mining algorithms; $acticom-
pares SPEC and NU-MineBench from the perspectives of IL&; Se
tion 5 analyzes cache performance of NU-MineBench to examin
the availability of MLP; Section 6 presents the scalabitifyparal-
lel data mining applications and discuss whether TLP in data
ing applications can be effectively extracted. We presgnachic
performance characteristic changes in NU-MineBench agiiins
in Section 7. Finally, we present our conclusions in Sec8ion

2. RELATED WORK

There have been a number of studies in characterizing data mi
ing applications. Bradford and Fortes [6] analyzed perfomoe
and memory-access behaviord#cision tree inductiobased data
mining algorithms. Ghotinget al [11] analyzedfrequent itemset
mining andclusteringalgorithms for their performance and mem-
ory behaviors. Cheet al [8] conducted a performance scalability

systems, which is increasingly becoming thefactostandard for
modern multi-processor systems.

3. EVALUATION INFRASTRUCTURE

We study the performance characteristics of data minindj-app
cations using the NU-MineBench [22] benchmark suite. Wé-eva
uated thirteen out of seventeen benchmarks in this suitétiogn
BAYESIAN, BIRCH, SNPand GENENET due to difficulties encoun-
tered in compilation. All benchmarks are written@ C++, and
all, with the exception of &I, GETI and ECLAT, are parallelized
with OpenMP directives. The benchmarks are compiled wii
using the Intel C/C++ compiler version 11.0. Taking advgataf
the extensive hardware performance counters availableaaium
processors, these applications are evaluated on a 8-coiertt-
based CMP with dual-core Intel Itanium-2 [1] processorsmg
at 1.6GHz. Each of the 8 cores have a 16KB L1l, a 16KB L1D
cache, a 1MB L2I, a 256KB L2D cache and a 9MB unified private
last-level cache. To compare the parallel performance dfimu
core processors with shared and private last-level on-chghe,
we also evaluate the parallel execution of these applicatan a
8-core x86-based CMP with quad-core Intel Xeon [2] processo
running at 2.66 GHz. The x86 based machine has two processors
each containing two dual-core dies, and cores in the sanshdie
a 4MB L2 cache. Each core has 32KB L1 cache.

The PerfMon [25] library is used to manage the hardware perfo



mance counters. Stalls in the Itanium pipeline back-endiaided
into five mutually exclusive categories. Most of the stadlased by
execution units waiting for operands are due to cache midsles
refer to them afache stalls in our figures. Stalls due to recircu-
lation of data access requests from L1D due to TLB or L2D 0OzQ
being full is referred to here &eci r cul ati on stalls. Fl ush
corresponds stalls caused by pipeline flushes. In our cheest
all such stalls are caused by branch mis-predictidRSE corre-
sponds to stalls caused by the Register Stack Engine, whitdg-
ligible in all applications.FE corresponds to stalls caused by the
pipeline front endPi n [21], a binary instrumentation tool, is used
to collect dynamic instruction profile.

The data mining applications we analyzed are divided into si
categories: association rule mining, classification,teltisg, opti-
mization, structure learning, and error-tolerant itenmsiting.
Association Rule Miningapplications take a database of item trans-
actions as input, and identify frequently-occurring itetssin the
transactions. Among the benchmarks evaluateeRI&RI, UTIL -

ITY MINE and ECLAT belong to this class.#RI0RIidentifies all
frequently occurring itemsets based on #peiori principle. Can-
didate itemsets of lengtk are generated from itemsets of length
k-1. Frequency of candidate itemsets are calculated andribe o
which are infrequent are then pruned to generate frequamsitts

of lengthk. The implementation uses a hash tree data structure to
store the generated candidate itemsetsiLU'Y MINE algorithm

is similar to APRIORIexcept that now each itemset is also given a
"utility” value and those with higher utility are identified CLAT
represents transactions by vertical transaction ID listsacandi-
datek itemset is generated by intersecting tvwelj-itemsets that

have a common prefix. The program partitions the search space

into small manageable chunks thereby reducing the pressute
memory system.

Classification workloads take as input a training dataset which is
used to develop a predictive model which is then used toi§ass
unlabelled records. &LPARC is a parallel and scalable version
of the decision tree classification algorithm. The data assified

by recursively splitting the records on the attribute whighds to
the best split. The process is continued until all recorda par-
tition fall under the same class. The implementation buddsee

nstucion Mix

Instruction Mix

(b) NU-MineBench Programs

Figure 1: Dynamic instruction mix comparison.

programs are similar to the ones used in association ruleagin
SEMPHY is the onlyStructure Learning workload evaluated by
us. Itis used to find species that are genetically related/doPh
genetic trees are used to represent genetic relationshigecies,
where closely related animals are in nearby branches. SEMPH
searches for maximum likelihood phylogenetic trees udiegtruc-
tural expectation maximization algorithm.

Optimization programs identify similar regions in DNA, RNA and
protein sequences. PLSA, the only benchmark in this cagegor
uses the dynamic programming paradigm based on the Smith and
Waterman algorithm to find similar regions between two saqas.

based decision model and uses a hash table to make the cemputa

tion more efficient. REARCHIis a RNA sequencing program which

finds homologous RNA sequences by searching a gene databased. PERFORMANCE CHARACTERISTICS:

The RNA sequence being searched for is built using a corftet-
grammar and a local alignment algorithm is used to find homol-
ogous RNAs in the database. Support Vector Machines- Recur-
sive Feature Elimination (SVM-RFE) classifies records Hgae

ing specific features. Records are eliminated recursiveinfa set

of active variables based on some support criteria.

Clustering aims at discovering groups of similar objects from a
database to expose the underlying data distributiomisNs di-
vides the input data by assigning them to their closestetagnter.
The kernel of the program is the Euclid distance computdtion-
tion. The K-means algorithm assigns a point in the database t
single cluster. But Bzzy K-MEANS relaxes the condition by al-
lowing a point to be a member of more than one cluster. Thd thir
program in this category is HOP, a density based clustetig a
rithm. The algorithm forms clusters by assigning partidiests
densest neighbor.

Error Tolerant ltemset Mining finds sets of items where, infor-
mally, most of the items commonly occur together. These-algo
rithms are useful for finding patterns that are a relaxatibfres
quent itemsets or for finding frequent itemsets in noisy .datas
category includes AFIl and GETI. The algorithms used in these

SPEC VS NU-MINEBENCH

For years, the SPEC CPU [29] has been widely accepted by com-
puter architects as the benchmark for measuring CPU peafuren
Many architectural features and compiler optimizatiorhteques
that aim to improve instruction-level parallelism (ILPeatesigned
with the performance characteristics of SPEC CPU in mind. In
this section, we analyze the differences between the SPEC In
ger [29] benchmarks with data mining benchmarks [22] in teofn
dynamic instruction mix, cach misses, effect of softwarefgich-
ing and execution stall cycle breakdown. NU-MineBench paots
are mostly control intensive like SPEC Integer as hence we-co
pare them, rather than with SPEC FP which is loop intensive.

Figure 1 shows the dynamic instruction mix of the SPEC Inte-
ger benchmark suite and NU-MineBench benchmark suite. eThes
two benchmark suites show similar trends, but with the fwiihgy
distinctions: SPEC Integer applications have 54% moressitor
structions than NU-MineBench programs, but have 16% feoat |
instructions. Data mining applications typically use thpdt data
to build temporary data structures. These data structuesthan
traversed many times with a small number of updates. Thissscc
pattern leads to more loads but fewer stores. SPEC progriams a
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Figure 2: CPU Cycles breakdown.

have 45% more branch instructions as compared to NU-MinetBen
applications.

Figure 2 shows that both SPEC Integer and NU-MineBench have
similar characteristics on the average stall cycle distiilm, de-
spite the differences in instruction mix and in cache migs.ridine
out of the thirteen data mining programs spend more than #0&b6 t
stalling on cache misses. We discuss the memory behaviataf d
mining workloads in detail in Section 5.

The number of L2 and L3 misses per thousand instructions for
SPEC and NU-MineBench programs are summarized in Figure 3.
The average number of cache misses per thousand instrsiftion
the two benchmark suites are similar: L2 cache misses pes&mal
instructions is 34% higher for SPEC Integer; and L3 cachesmis
per thousand instructions is same for both benchmark suites
NU-MineBench, four benchmarks have a large number of L2€ach
miss.

Although many data mining applications process large ispts,
access to input data typically exhibits good locality anésloot
cause large number of cache misses. Data mining benchmemks g
erate large, complex auxiliary data structures such as tiesh.
Accesses to these structures are very irregular and dtffacptefetch
and cause frequent cache misses.

4.1 Discussion
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Figure 3: Cache Miss Rate comparison.

ILP from data mining applications. But there are some key dif
ferences in data mining applications that present chadierand
novel opportunities in processor design. Processors tanitiata
mining applications can have smaller load-store queues ¢ha
rent generation processors, since there are fewer stdredgtiens

to commit in data mining applications. This can potentiaity
prove the power efficiency of processors as load-store Guigpe
ically consume a lot of power. Processors can also affordate h
smaller write buffers for data mining applications for tlaere rea-
son. Data mining applications generate and work with temmyor
data structures which are deleted during the course of thgram.
Hence any writes made to them need not be committed to memory
as it will be useless. Identifying such writes and not cortingt

to memory would increase memory performance significaly.
eliminating unnecessary writes, fewer instructions wélldxecuted
leading to faster execution times.

5. MEMORY HIERARCHY PERFORMANCE

Improving cache performance is key for many data mining ap-
plications, since nine out of the thirteen benchmarks wenéxed
spent over 40% of total execution cycles stalling as a re$gtche
misses. Our analysis reveals that, although many data gémpli-
cations process large input sets, accesses to the inputisizaily
exhibit spatial locality and do not cause cache misses. Menrye

We compare NU-MineBench to SPEC Integer benchmarks since these applications often construct large and irregulailiankdata

both applications contain branch intensive codes and hdamga
number of irregular memory accesses. Although there isfardif
ence in the dynamic instruction mix between the suites, Huhe
miss rates and stall distributions are similar. Hence mgspro-
cessors built with SPEC workloads in mind should be able te pe
form well on data mining workloads. Data mining applicaton
have fewer store instructions than SPEC programs, and lieece
are more instruction scheduling opportunities resultmgore ILP
that can be exploited. Therefore, existing processors tmiex-
ploit ILP in SPEC CPU benchmarks should be able to exploitemor

structures, such as hash trees [32]. Accesses to thesdardatares
exhibit poor locality due to the use of indirect accessespidt-
ers. Although software-controlled prefetch can potelytiedduce
cache misses by fetching data into cache before it is usethdoy
data mining applications, either no prefetch instructiaresgener-
ated by the compiler or the compiler-inserted prefetchrimsions
are ineffective, even with aggressive optimizations. Thiwot only
because the underlying data structure is complex and pddated,
but also because accesses to these data structures arelethbved
complex control flow.
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Figure 4: Effect of compiler inserted prefetch instructions.

Figure 4 shows the impact of compiler-inserted prefetctries
tions on NU-MineBench and SPEC Integer applications. Thelyr
shows the percentage change in total execution cycles fmuex
tions compiled with compiler inserted prefetch instruatcover
the executions without. In SPEC, a few applications, suahes
LIBQUANTUM and HMMER, benefit significantly from compiler-
inserted prefetch. while others are not significantly aéfdc In
NU-MineBench, on the other hand, the effect of compiler iitesk
prefetch instructions is more dramatic. While some appbcs,
such as WILITY-MINE, K-MEANS and SALPARC, benefit sig-
nificantly from prefetch instructions, many suffer sigrafit per-
formance degradation. These variations indicate thagtisexr need
for better static and dynamic optimization techniques femeyat-
ing compiler-inserted prefetches. In the rest of this sective
provide a case-by-case analysis of the cache performaneacbf
application.

ScaL

PARC, a classification benchmark, stalls on 57% of CPU cy-
cles due to cache misses. The program has a memory foot-
print that is twice its input data size to store a model based o
the training data. The model is constructed as a large, com-
plex tree-based data structure. Model construction is &her
most of the time is spent as classifying the input dataset is

all threads read from a single copy of the hash table which
does not fit in cache leading to poor memory performance.
The compiler does not insert prefetch instructions for this
program as the element of the hash table accessed cannot be
predicted.

SVM-RFE, another classification benchmark, shows the sighe

stall percentage. It stalls for 69% of total CPU Cycles, fahic

is almost entirely due to recirculation stalls. The aldorit
represents the data set as points in an n-dimensional plane
and splits the data points into different classes by seagchi
for an optimal splitting hyper-plane. The optimization ker
nel makes use of Math Kernel Library, to compute vector
dot product, where each vector is a one dimensional float-
ing point array representing the coordinates of the poihe T
program stalls when loading data from the vectors for dot
product computation. The assembly code generated for the
library, revealed that the prefetch instructions generde

the compiler were not very effective.

APRIORI and UTILITY MINE are association rule mining programs

AFI

which have similar behavior. BRIORI stalls for 66% of to-

tal cycles, the majority of which are caused by cache misses
which account for 53% of total CPU cyclesTWiTy MINE

stalls for 62% of the total cycles, almost all of which are
cause due to cache misses. The programs try to find items
that occur together frequently in a large group of item trans
actions. Both programs use a hash tree to store subsets of
the input transactions. The tree is then traversed to cbent t
number of occurrences of each subset in the transaction data
However, the hash tree is too large to fit into the cache and
exhibits poor locality. Hence, repeated accesses of the has
tree data structure generate a large number of cache misses.
Also, because of the complex control flow in thet-spot
compiler does not insert prefetch instructions which ferth
degrades the performance.

an error tolerant itemset mining algorithm, is very ganto
Apriori and finds frequent itemsets in noisy data. The pro-
gram has a load instruction embedded in a double nested
loop, which causes a large number of cache misses. The
static compiler inserted a prefetch instruction in the mne
loop to hide this latency. However, the inner loop has a small
iteration count; and thus this prefetch is not only ineffext

but actually causes performance degradation. Moving the
prefetch instruction to the outer loop improves the perfor-
mance of this application by more than 30%. It is difficult for
the compiler to identify this optimization opportunity s@

the outer loop contains conditional branches.

not computationally intensive. During the model building HOP, a clustering algorithm stalls for 45% of total CPU cgcle

phase, the program builds lists for each attribute of thatinp
data sorted by the attribute value. At each node of the deci-
sion tree, a hash table is used to partition these attriisite |
between the child nodes. The hash table is similar in size
with the number of records, containing millions of entries,
and does not fit in the cache. By examining the addresses
accessed by the program it is clear that accesses to the hash
table are very irregular. Since the hash table is very large,
and accesses to it are highly irregular, it leads to frequent
cache misses. When the program is parallelized using MPI,
each processor gets a part of the hash table which fits in the
cache, but when OpenMP is used to parallelize the program

of which cache misses account for 35% of the CPU cycles.
In this application, the instructions were scheduled poorl
which could not effectively hide the latency of load instruc
tions. The compiler failed to unroll certain loops which wer
inside control statements. Since the compiler was not $ure i
the loop would be executed at run time it was conservative
and did not unroll these loops. By manually unrolling them,
the performance of the program improved by 14%. K-means
and Fuzzy K-means, both clustering applications, alstestal
for 45% and 60% of total CPU cycles respectively. Cache
miss penalty accounted for 41% of total cycles in K-means,
while it accounted for 56% of total cycles in Fuzzy K-means.
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Figure 5: Scalability of NU-MineBench on multi-core systens.

PLSA, a gene sequence alignment algorithm, contains cempil
inserted prefetch instructions, but removing these pchfet
instructions actually improves performance by 24%. In this
application, the compiler identified linear accesses tgdar
array-based data structures and decided to insert prefgtch
instructions. However, due to complex branch behaviors, at
runtime the application only accesses a small fraction ef th

array. Thus most of the prefetched data is useless, and the
associated overhead degrades program performance. Thes

instructions would have been effective, if the program tra-
versed through a large portion of the array. Unfortunately,
the compiler is unable to determine the correct access pat-
tern and make the proper decisions statically.

EXTRACTING THREAD-LEVEL PARAL-
LELISM ON MULTI-CORE PROCESSORS

Prior works [16] have shown that data mining applicatiores ar
able to scale to 128 processing element on distributed-memilti-
processor systems using MPI. For applications in the NUeBanch
suite, ten out of the thirteen benchmarks that we have ealua
have been explicitly parallelized using OpenMP directi{23],
and most of these applications are able to scale linearlyrares-
memory multi-processors systems with up to 8 processorsleWh
it is clear that these applications exhibits high level oFTit is not
clear whether such parallelism can be extracted on muté-poo-
cessors that are becoming increasingly common. While roate
processors have abundant resources and efficient inesaetfwom-
munication, we must face the following challenges whenasttr
ing parallelism on multi-core processors: (i) sharing ofobiip re-
sources may cause contention among threads. For examatedsh
caches may lead to complex thrashing/prefetching behgvioy
limited off-chip bandwidtimay become the new performance bot-
tleneck. While the computing power of modern multi-coreqa®
sors increases dramatically with each generation of tdobgothe
increase in off-chip bandwidth cannot scale at the same Tates

constraint may become the new performance bottleneck.

We studied the parallel performance of seven out of ten bench
marks that have OpenMP directives in the benchmark suit&1-A
ORI, UTILITY MINE and PLSA are omitted due to compilation
errors. Our evaluation is conducted on two distinct CMP nireeh
as described in Section 3. The implementation 9MSRFE in
NU-MineBench is overly synchronized, thus is unable to el
all. However, previous work [8] has shown that other implatae
tions of SYM-RFE can potentially scale better. Thus, we exclude
this benchmark from further discussionseNBPHY scales linearly
only up to 2 threads and shows small performance improvement
with 4 and 8 threads. Close examination reveals tiE8Hy has
unbalanced workload between the threads. In many segménts o
execution, only one thread is active. The complete restdtaail-
able in the Figure 5.

We use two platforms to evaluate scalability, as describ&eic-
tion 3. The most notable difference between these two acthites
is the organization of the LLC: Itanium-based multi-coreqassor
has private on-chip LLC, while on the Intel Xeon-based racitie
processor, two cores that are located on the same die sksartte
LLC, but cores on different chips do not share cache.

In terms of scalability, the two architectures show simitends:
HOP and RBEARCHare able to scale linearly upto 8 threadszZ2Y
K-MEANS, SCALPARC and &MPHY are able to scale only up to
4 threads; KMEANS is able to scale linearly upto 8 cores only
on the Itanium-based system. Fat& PARC the scalability issue
is mainly affected by cache performance. On the 8-coreutani
based system, as the number of threads increases, the tageen
of total execution cycle stalls due to cache miss also ire®aig-
nificantly. When number of threads increases from four tieig
no performance improvement is observed, but stall cyclestdu
cache miss penalty increases by 50%. When the number ofithrea
changes from 1 to 2 to 4, and finally to 8, the total percentdge o
stall cycles increases from 46% to 48% to 54% and to 74%. The
major contributor to this is the EXE stall cycles, mainly cioe
cache misses, which increases from 27% to 27% to 31% andyfinall
o 48%. Stalls due to recirculation also contribute to stadile in-
crease, butis less significant. It only increases from 13%3%6 to
15% and finally to 20%. The most significant increase occuesnwh
the number of threads increases from four to eight. The numbe
of cache misses also increases correspondingly. Whilecading
linearly, SCALPARC is able to scale better on the Intel Xeon-based
multi-core system. In particular, the number of cache nsissays
the same even as the number of threads increasegeAls, on
the other hand, shows the opposite behavior@sL$ARC. On the
Itanium-based multi-core system, when the number of tteréad
creases from four to eight, the cache miss rate decrease&%y 3
However, on the Intel Xeon-based multi-core system, thdeac
miss rate remains constant.

The key difference betweenc8LPARC and KMEANS is that
there is a large amount of shared data between threadsAn-S
PARC, but very little in KMEANS. Therefore, KMEANS is able to
scale better on systems with private last-level cache;enBilAL -
PARC is able to scale better on systems with shared last-leghbca
For K-MEANS, on shared LLC, data brought in by one thread can
potentially over-write data brought in by other threadg, dannot
be used by other threads; on private LLC, data brought in &y on
thread does not interfere with data brought in by anothestthr For
ScALPARC, on private LLC, data brought in by one thread cannot
be used by other threads; thus shared data must be brougltént
cache multiple times causing the cache miss rate to incréase
shared LLC, shared data brought in by one thread can be used by
others, thus cache miss rate does not increase with the muwhbe



threads.

7. DYNAMIC PERFORMANCE CHARAC-

TERISTICS VARIATIONS

The results presented in this paper so far make two simplifica
tions. First, it is assumed that the behaviors of the progstay
the same throughout the entire duration of the executiars e
present average performance measurement. Second, itiimess
that the performance characteristics of data mining retha@same
over all input sets, thus we only present the performanceacha
teristics for one input set. While these two simplificatiatsnot
affect the accuracy of the results for most applications,haee
observed that the performance characteristics changerfioe sip-
plications as (i) the program enters different code segsn€(ii)
different input sets are used; and (iii) the same code segmake
progress in mining the data.

Phases behaviors [27], often refer to the fact that the progr
behaviors change as the program enters different segnfesude,
have been reported in SPEC Integer applications.

the number of stalls due to branch misprediction remain dineess
cache miss stalls become a more dominant bottleneck. Thberum
of itemsets generated by the algorithm increases drdgtetlow
support values, increasing the size of the hash tree usemr® s
the itemsets. Hence with lowering support the hash treergtete
by the program can no longer fit in the cache which increases th
number of cache misses.

More interestingly, we observe that some compiler optimiza
tions also behave differently as the input set changes.PRIAR],
prefetch instructions are inserted by the compiler in thepsut
counting routine. However, these prefetch instructiomsoaty ef-
fective for data set 1, but rather degrade performance forskst 2.
These types of behaviors suggest that there may not exiegkesi
optimal compilation strategy, rather dynamic optimizdrattob-
serve the behaviors of the application at runtime and revipe
the code can potentially outperform static ones.

7.2 Time Dependent Performance Variations

Another form of dynamic performance variation is observed i
data mining applications: the performance charactesisifcthe

While phase behavior is common in both SPEC and NU-MineBen&@me code segment changes over time while operating onrtee sa

data mining applications demonstrated additional dynareitor-
mance characteristics variations that we will be focusiogthe
rest of this section.

7.1 Input Dependent Performance Variations

We refer to the fact that some applications behave différent
when different input sets are given as input sensitive hiehav
Assaociation rule mining applications demonstrated suphtisen-
sitivity. We evaluated the performance characteristicA PRIORI
with three different input sets: (i) the input data set reéshwith
NU-MineBench [22]; (ii) anonymized traffic accident dataggiii)
data generated from the IBM Quest data generator [3]. Therlat
two input sets are from the University of Helsinki [33]. Wevkanot
only observed different code segments emerge as the penfiaen
hot spots, but also changes in the stall cycle breakdowredapiut
sets change. The total percentage of execution time gafbnthe
three input sets are 67%, 50% and 88%, respectively. A deitail
examination of the breakdowns of stall cycles reveals everem
differences: stalls due to cache misses correspond to 48%, 1
and 79% of total cycles, recirculation stalls correspond 465,
22% and 5% of total cycles, and stalls due to branch mispredic
tion correspond to 8%, 10% and 2% of total cycles. One reason
for such performance variation is the fact that differeiginsents of
code emerge as thmt-spotwith different input sets. ARIORIhas
two phases of execution: candidate generation and suppont-c
ing. For the first two input sets, support counting for thedidate
itemsets is thdot-spof whereas, for the third input set, candidate
itemset generation is tHet-spot

These performance characteristic variations are not gimel
lated to the input set sizes, rather, other factors like remobitems
in the input set, average transaction size, number of tciioss
etc., also have significant influence. For instance, inpigt wé&h
more items tend to generate more candidate patterns, aBpeci
in the initial stages of the algorithm where itemsets of tieddy
small size are being evaluated. Input set characteristicaat the
only input parameter that influence the behavior of the gogr
The supportlevel in association rule mining applications defines
the minimum number of times an itemset has to occur in thefset o
transactions to be considered frequent. The support l&a@Iralu-
ences the program behavior. IrPRIOR|, at higher support values,
branch misprediction becomes a significant issue, corinigpuo
more than 25% of stalls, whereas at lower support valueguadth

input set. APRIOR|, for example, exhibits time dependent perfor-
mance variation, but only on one of the three input sets, ripati
set released as part of the NU-MineBench benchmark suite. Th
dynamic execution cycle breakdown on this input set is shiown
Figure 6. While the program executes the same code segment,
the first segment of the execution, LLC miss penalty is thegdezy
formance bottleneck, but during later segment of executiecir-
culation stalls become the new performance bottleneckrIARI
searches frequent itemsets in an input set, and the len§the o
searched itemsets increase as the application makes gsodree
algorithm is able to eliminate some possible candidateses) and
eventually the search space fits in the LLC and cache misdtpena
ceases to be the bottleneck.

8. CONCLUSIONS

Increasing emphasis on novel data-driven, knowledge disco
ery techniques have called for a re-evaluation of the a¥chital
features and software optimization techniques employedirent
computing systems. In this paper, we conduct a thorougtoperf
mance analysis of NU-MineBench, a data mining benchmatk sui
that includes applications from several important categaf data
mining such clustering, classification, association ruieing etc.
We characterize the performance characteristics in tefrdsfer-
ent forms of parallelism, such as ILP, MLP and TLP and foured th
following:

e the IPC of data mining applications is comparable to SPEC
Integer applications. However, data mining applicatidnss
potential for more ILP since with fewer store and branch in-
structions, data mining applications have more potential f
instruction scheduling.

extracting memory-level parallelism is key for improvirigpt
performance of data mining applications, since nine out of
the thirteen benchmarks examined spent more than 40% of
the CPU cycles stalling for cache misses. However, data min-
ing applications build large and irregular auxiliary datais-
tures, such as hash tables to store runtime information; and
existing prefetching techniques are inadequate with satd d
structures. Thus, developing more sophisticated prefegch
techniques targeting such auxiliary data structures iféey
improving MLP.
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e While quite a few applications have large amount of TLP, not
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all applications demonstrated linear scalability on modire
processors. Our experiments suggest that the performénce o
the last-level on-chip cache is key. However, differentliapp

[15]

cations have contradicting requirements for the orgaiozat  [16]
of the LLC: applications with shared data prefer shared LLC,
while applications with little shared data prefer privated. [17]
Our observation suggests that dynamic cache partition tech
nigues may be desirable.
(18]
Several different types of performance characteristicava
tion exist: the performance characteristics of an appboat [19]
vary as the program enters different code segments and as the
input set changes. Furthermore, performance charaaterist
of the same code segment can also change over time. More
interesting, the effectiveness of some compiler optinmzet [20]
change as the performance characteristics vary. Thus, dy-
namic optimizers, that observe application performanee-ch 213
acteristics and re-optimize the application to adapt tdisuc
variation are desirable.
[22]
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