
Characterizing Multi-threaded Applications for
Designing Sharing-aware Last-level Cache

Replacement Policies
Ragavendra Natarajan

Department of Computer Science and Engineering

University of Minnesota

Minneapolis, Minnesota 55455, USA

natar@cs.umn.edu

Mainak Chaudhuri

Indian Institute of Technology

Kanpur 208016, INDIA

mainakc@iitk.ac.in

Abstract-Recent years have seen a large volume of propos
als on managing the shared last-level cache (LLC) of chip
multiprocessors (CMPs). However, most of these proposals pri
marily focus on reducing the amount of destructive interference
between competing independent threads of multi-programmed
workloads. While very few of these studies evaluate the proposed
policies on shared memory multi-threaded applications, they do
not improve constructive cross-thread sharing of data in the LLC
In this paper, we characterize a set of multi-threaded applica
tions drawn from the PARSEC, SPEC OMP, and SPLA SH-2
suites with the goal of introducing sharing-awareness in LLC
replacement policies. We motivate our characterization study by
quantifying the potential contributions of the shared and the
private blocks toward the overall volume of the LLC hits in these
applications and show that the shared blocks are more important
than the private blocks. Next, we characterize the amount of
sharing-awareness enjoyed by recent proposals compared to the
optimal policy. We design and evaluate a generic oracle that can
be used in conjunction with any existing policy to quantify the
potential improvement that can come from introducing sharing
awareness. The oracle analysis shows that introducing sharing
awareness reduces the number of LLC misses incurred by the
least-recently-used (LRU) policy by 6% and 10% on average for
a 4MB and 8MB LLC respectively. A realistic implementation
of this oracle requires the LLC controller to have the capability
to accurately predict, at the time a block is filled into the LLC,
whether the block will be shared during its residency in the LLC.
We explore the feasibility of designing such a predictor based on
the address of the fill and the program counter of the instruction
that triggers the fill. Our sharing behavior predictability study
of two history-based fill-time predictors that use block addresses
and program counters concludes that achieving acceptable levels
of accuracy with such predictors will require other architectural
and/or high-level program semantic features that have strong
correlations with active sharing phases of the LLC blocks.

I. INTRODUCTION

Dynamic sharing of the last-level cache (LLC) among the
processing cores of a chip-multiprocessor (CMP) has become a
popular design choice in the industry due to better utilization of the
cache space. Multi-threaded shared memory applications executing
on such a CMP can enjoy fast communication between the threads
mapped on different cores through the shared LLC. This inter-core
reuse of shared data can be significantly improved by introducing
sharing-awareness in replacement or insertion policies of the LLC.
However, most replacement policy proposals for shared LLCs

978- 1 -4799-055-311 3/$3 1 .00 ©20 1 3 IEEE

focus on reducing cross-thread destructive interference in multi
programmed workloads and pay no special attention to improving
cross-thread constructive sharing in multi-threaded shared memory
programs. Even though some of these proposals evaluate their
policies on multi-threaded workloads, these policies treat private
and shared data equally. In this paper, we squarely focus on the
problem of introducing sharing-awareness in replacement policies
for shared LLCs. With this goal in mind, we characterize a set of
shared memory parallel applications drawn from the PARSEC [5],
SPEC OMP [1] , and SPLASH-2 [38] suites executing on an
eight-core CMP with an inclusive three-level cache hierarchy. Our
characterization is directed toward understanding the properties of
an application that can positively or negatively influence the design
of a sharing-aware LLC replacement policy.

Fundamentally, data sharing is the manifestation of the reuses
that happen between the threads of a multi-threaded application.
An LLC management policy that can accurately estimate reuse
distances would naturally be sharing-aware. However, online ac
curate estimation of reuse distance is difficult and most existing
policies try to indirectly estimate the next-use distances of cache
blocks through easily implementable heuristics. In this paper, we
explore the characteristics of multi-threaded applications that can
be exploited to incorporate better treatment for shared cache blocks
in these existing LLC management heuristics.

Our study begins with an analysis of the reuse behavior of
the shared cache blocks that experience cross-thread reuses in
multi-threaded applications. This analysis shows that the shared
cache blocks contribute more LLC hits than the private cache
blocks in these applications (Section IV). Next, we evaluate the
degree of sharing-awareness enjoyed by recent LLC management
proposals. This study reveals how these proposals compare against
Belady's optimal replacement policy [3] , [28] in terms of sharing
awareness (Section V). To improve the sharing-awareness of the
existing proposals, we design a generic oracle that can be used in
conjunction with any replacement policy. This oracle has future
knowledge about the sharing pattern of the application and puts
extra weight on shared data reuses (Section VI). The oracle also
helps us identify a common design element that all good sharing
aware LLC replacement policies must possess. This design element
is a predictor that predicts at the time a block is filled into the
LLC whether the block will be shared by at least two cores during
its residency in the LLC. We analyze how data is shared and
utilized in the LLC by multi-threaded applications and highlight
the implications of these characteristics on the design of such a

predictor (Section VII). We explore two avenues for designing this
predictor. First, we examine if the modes of sharing e.g., read-only
and read-write have any correlation with the volume of the LLC
hits experienced by the shared cache blocks. Second, we conduct
a predictability study of two history-based fill-time predictors that
make use of the address of the cache block being filled and the
program counter of the instruction that caused the fill into the
LLC. We conclude that other architectural features or high-level
program semantics or a combination of both are required to achieve
an acceptable level of prediction accuracy. These features should
be such that they help the architecture identify the active sharing
phases of a cache block so that the block can be treated differently
by the LLC replacement policy during these phases.

This paper makes the following contributions.

• We show that the cross-thread reuses of the shared LLC
blocks are more important than the intra-thread reuses of the
private LLC blocks in multi-threaded applications.

• We show that the amount of data sharing in the LLC is greatly
influenced by the LLC replacement policy.

• Our analysis based on a generic oracle shows that introducing
sharing-awareness in the existing LLC replacement policies
can significantly improve their performance.

• We analyze how the data in the LLC is utilized and shared in
multi-threaded applications. We highlight the implications of
these characteristics on the design of sharing-aware policies.

II. RELATED WORK

Replacement and insertion policies for LLC blocks have been
researched extensively. The insertion policies decide the age of
a block at the time the block is filled into the LLC [13] , [14] ,
[32] . The dynamic insertion policy (DIP) adapts to the changing
application behavior by deciding whether to insert a new block
into the LLC at the least-recently-used (LRU) or the most-recently
used (MRU) position [32] . The thread-aware DIP extends this idea
to control block insertion into a shared LLC for each thread of a
multi-programmed workload [14] . These policies continue to use
LRU as the replacement policy. The recently proposed re-reference
interval prediction policy assigns an n-bit re-reference prediction
value (RRPV) to each LLC block at the time of insertion into the
LLC. The block with the largest i.e., 2n - 1 RRPV is predicted to
have a large re-reference interval and is selected as the victim. On a
hit, the RRPV of the block is updated to zero anticipating a short re
reference interval. The static re-reference interval prediction (SR
RIP) policy assigns RRPV of 2n - 2 to all newly inserted blocks
anticipating an intermediate re-reference interval. The dynamic re
reference interval prediction (DRRIP) policy adapts to the chang
ing application behavior by dynamically choosing the RRPV of a
new block from the set {2n - 1,2n - 2}. Thread-aware DRRIP
extends DRRIP to decide the insertion RRPV of the heterogeneous
threads in a multi-programmed workload. None of these proposals
evaluate the policies on shared memory multi-threaded workloads.
A recent study shows that DRRIP is more effective than thread
aware DRRIP for shared memory multi-threaded workloads where
the threads are more homogeneous due to the single-program
multiple-data (SPMD) nature of the workloads [7] . In this paper,
we explore sharing-awareness of the two-bit (i.e., n = 2) SRRIP
and DRRIP policies. In this study, we focus only on inclusive
LLCs. We note that there have been studies that explore insertion
policies for exclusive LLCs as well [7] , [1 1] .

Replacement policy proposals attempt at approximating Be
lady's optimal policy, which victimizes the block with the largest
next-use distance within a set [3] , [28] . This is the optimal dead

2

block within a set. The LRU replacement policy speculates that the
block with the largest next-use distance would be the one accessed
least recently. Replacement policies proposing improvements on
LRU attempt to identify more accurate dead block candidates by
correlating block reuses, reuse distances and death of a block with
program counters of the instructions that access the block [12] ,
[17] , [18] , [19] , [20], [22] , [25] , [39] , or by incorporating tech
niques to gain some look-ahead into the cache access stream to
estimate the next-use distances [10] , [27] , [34], or by exploiting
other properties of access patterns that do not make use of program
counters [7] , [8] . However, very few of these proposals evaluate
the policies on shared memory multi-threaded workloads [7] , [8],
[36] and they do not address the problem of improving cross
thread sharing in the LLC. In this paper, we explore the sharing
awareness of SHiP-PC, a recently proposed policy that identifies
the probable dead blocks in a set by correlating the reuses of a
block with the program counter of the instruction that fills the block
into the LLC [39] . A recent work (CSHARP) proposes to offer
extra protection to the dirty shared blocks to improve the quality
of LLC replacement for multi-threaded applications [3 1] . As a part
of our workload characterization, we explore the influence of the
read-write shared blocks on the volume of LLC hits. Even though
the hardware-managed policies have not paid much attention to
shared data, compiler transformations to enhance the locality of
shared data in multi-threaded workloads have been proposed [1 6] .

Policies to dynamically partition a shared LLC among the com
peting threads of a CMP have been proposed [26], [33] , [35] , [40] .
However, these policies assume that the threads are independent (as
in a multi-programmed workload) and do not take into account any
cross-thread data sharing. Apart from these, there is a proposal that
partitions each set in the shared LLC into private and shared ways
by dynamically choosing one of the four predefined partitions [9] .
Since the possible partitions are statically predefined, the policy
can only approximately match the optimal need of the workloads.
Also, the policy, at the time of filling a block into the LLC, needs
to infer whether the block will be shared during its residency in
the LLC. Accordingly, the policy assigns the block to the shared
or the private partition of the target set. The proposal uses a simple
heuristic for this purpose that infers a block being filled into the
LLC to be shared if it has already been shared in the past or if
it is being filled by a core that is different from the core which
filled the block during its last residency in the LLC. Once a cache
block is identified as shared, this information is tracked and the
block is inferred as shared during all subsequent fills into the LLC.
We will refer to this policy as sharing-aware-partitioning (SA
Partition). We show that for the workloads considered in this paper,
this simple heuristic is ineffective in inferring whether a block will
be private or shared during its current residency in the LLC.

The PARSEC, SPLASH-2, and SPEC OMP benchmark suites
are widely used in the community and there have been prior
works that characterize the behavior of these applications on CMP
systems [1] , [2] , [4] , [5], [6] , [38] . These studies analyze various
characteristics of these applications including memory characteris
tics such as working set sizes, amount of sharing, true/false sharing,
and the nature of cross-thread communication. The shared LLC
behavior of the emerging recognition, mining, synthesis (RMS),
and bioinformatics workloads has been evaluated in detail on CMP
systems in prior studies [15] , [23] , [24], [29] . The effectiveness
of compiler-directed software prefetching on these workloads has
been evaluated [30] . These studies conclude that these applications,
in general, are memory intensive, have large working set sizes, and
enjoy good locality. These studies also show that a shared LLC per-

OShared ra Private-reuse • No-reuse

!!-
�'" �'" �'" .. '" .. '" .. '"

�� �� ��
00 tlt; a:g, �� �� XX �� 00 ww

�� II e� :c:c �� l!"!l �� .�.� �� ':;':; �� (!� �n:� ;2;2 �� » rJrJ g� 00 �� �� ��

Fig. 1 : Distribution of the LLC fills based on the reuse categories for
4 MB and 8 MB LLCs with Belady's optimal replacement policy.

forms better than an iso-capacity configuration of private per-core
LLCs. Our work differs from these prior characterization studies in
that we explore the influence of LLC replacement policies on the
data sharing behavior of multi-threaded applications.

III. C HARACTERIZATION METHODOLOGY

We use the Multi2Sim simulator [37] to generate LLC access
traces from the applications. We model a CMP with eight single
threaded x86 cores. Each core has private L1 and L2 caches and
the LLC is shared among all the cores. The L1 instruction and
data caches are 32KB 8-way set-associative and use the LRU
replacement policy. The per-core unified L2 cache is 1 28KB 8-
way set-associative and use the LRU replacement policy. The
load/store micro-ops that miss in the L2 cache are issued to the
shared LLC and recorded in our LLC access trace. Each element
of the trace contains the requested address, the requesting core
id, the program counter of the instruction that generated the LLC
access, and the request type (i.e., instruction or data fetch and load
or store). An offline LLC model digests each workload trace and
generates the statistics of the desired characteristics. We model a
1 6-way set-associative shared inclusive LLC and experiment with
two different capacities, namely, 4 MB and 8 MB. The block size
in all caches is 64 bytes.

We select eight applications from the PARSEC suite (can
neal, ferret, fluidanimate, freqmine, vips, streamcluster, ray trace,
dedup), three from the SPLASH-2 suite (fft, ocean contiguous,
and radix), and two from the SPEC OMP suite (art and equake).
The PARSEC applications are run for the entire regions of in
terest. We use the sirnrnediurn input sets provided with PAR
SEC for all applications except canneal. For canneal, we use the
sirnlarge input set. For the SPEC OMP applications, we use the
MinneSPEC [2 1] inputs (for equake, the ARCHduration is set to
0.5) and simulate the entire parallel regions of the applications.
The SPLASH-2X applications distributed with the PARSEC suite
are used with the s irnrnedi urn input sets and simulated for the
entire regions of interest.

IV. IMPORTANCE OF CROSS-THREAD REUSES IN

MULTI-THREADED ApPLICATIONS

A fill that brings a cache block into a shared LLC can be clas
sified into one of three categories, namely, no-reuse fill, private
reuse fill, and shared fill. A no-reuse fill brings a cache block that
does not experience any reuse during its residency in the LLC. A
private-reuse fill brings a cache block that experiences LLC reuses
only from the thread that brought the block to the LLC. A shared
fill brings a cache block that enjoys reuses from multiple threads
during its residency in the LLC. Figure 1 shows the distribution
of the LLC fills for each application for 4MB (left bar in each
group) and 8MB (right bar in each group) LLCs running Belady's
optimal replacement policy. We use Belady's optimal policy in our

3

• Shared D Private

!!-
.. '" .. '" .. '" .. '" .. '" .. '" .. '" �'" .. '" .. '"

�� �� �� �� :g:g �� t;t; s.� �� �� XX U ww :0"5 ��
"''''

00 EE 'E"E ':;':;: �� ;2;2 00 �� .!� �� » �� ."." ."." II tit! gg �� <c<c �l! "''''

Fig. 2: Distribution of the LLC hits enjoyed by the private and shared
cache blocks for 4 MB and 8 MB LLCs with Belady's optimal
replacement policy.

1::
&

.4MB LLC D8 MB LLC

�6 .-�_-r�----------------------------------

�4
11 2

�O+-����� � ��� ������ �C4 JL�� E
�

Fig. 3: Reuse count per shared LLC fill normalized to the reuse count
per private-reuse LLC fill for 4 MB and 8 MB LLCs with Belady's
optimal replacement policy.

analysis to understand the true nature of the LLC reuses in these
applications. On average, the majority of the LLC fills are no
reuse fills in both 4MB (64%) and 8MB (50%) LLCs. The average
number of private-reuse and shared fills is 29% and 21 % for an
8MB LLC. Applications such as canneal, dedup, ferret, ray trace,
and vips experience more shared fills than private-reuse fills. The
average number of private-reuse and shared fills for a 4MB LLC
is 21 % and 1 5%, respectively. These results show that the shared
fills constitute a significant fraction of the useful LLC fills in multi
threaded applications.

To further understand the sources of the LLC hits, Figure 2
compares the number of LLC hits to the private and shared cache
blocks in 4MB and 8MB LLCs running Belady's optimal policy.
On average, 5 1 % and 56% of the LLC hits are to the shared cache
blocks in 4MB and 8MB LLCs, respectively. The fraction of the
LLC hits to the shared cache blocks decreases with decreasing LLC
capacity, since the likelihood of a cache block being evicted before
experiencing the accesses from all its sharers is higher in a smaller
capacity LLC. Shared cache blocks enjoy a significant fraction of
the LLC hits (more than 90%) in applications such as canneal,
dedup, ferret, ray trace, and vips in an 8MB LLC. The trends are
similar in a 4MB LLC. These results suggest that a shared fill,
which brings a shared cache block into the LLC, is more valuable
than a private-reuse fill in multi-threaded applications. To further
quantify this aspect, we compare the average number of reuses
experienced by a private-reuse fill to that of a shared fill. Figure 3
shows the average reuse count per shared fill normalized to the
average reuse count per private-reuse fill in these applications for
4MB and 8MB LLCs running Belady's optimal policy. On average,
a shared LLC fill experiences 2.3 and 2.7 times more reuses than a
private-reuse fill in 4MB and 8MB LLCs, respectively. On average,
a shared LLC fill experiences an order of magnitude more reuses
than a private-reuse fill in dedup for both 4MB and 8MB LLCs.
These results indicate that the shared LLC fills are more valuable
than the private-reuse fills in several multi-threaded applications.
A sharing-aware LLC replacement policy can identify and protect
the cache blocks brought in by the shared fills.

·2 sharer fill &3 sharer fill m4 -7 sharer fill .8 sharer fill

�� �� �� �� �� �� �� �� � �� �� �� �� ��

�� .� .� 1 �� .:!S .:!S :E:E � � �� ��

Fig. 4: Distribution of the LLC hits enjoyed by the shared fills of
different sharing degree categories for 4 MB and 8 MB LLCs with
Belady's optimal replacement policy.

Figure 4 further investigates the reuse behavior of the shared fills
classified based on the number of sharers. A shared fill is classified
into one of the four categories based on the number of sharers the
filled block experiences before it is evicted from the LLC. Figure 4
shows the contribution of each category to the LLC hits enjoyed by
the shared fills. On average, the 2-sharer, 3-sharer, 4-7-sharer, and
8-sharer fills contribute 34%, 9%, 21 %, and 36% respectively of
all LLC hits to the shared blocks in an 8MB LLC. These numbers
for a 4MB LLC are 40%, 10%, 20%, and 30%, respectively. These
results show that not all shared fills are equally important and the
2-sharer and 8-sharer fills together contribute to about 70% of all
the cross-thread LLC reuses. In canneal, dedup, ferret, freqmine,
ray trace, streamcluster, vips, and art, the LLC fills that experience
more than three sharers contribute to majority of the cross-thread
LLC reuses. In summary, the results discussed in this section bring
out three important facts. First, the shared fills experience more
LLC hits than the private fills. Second, each shared fill enjoys more
than twice the number of LLC hits than a private fill, on average.
Third, the importance of a shared fill depends on the degree of
sharing that the filled block experiences during its residency in the
LLC.

V. QUANTIFYING S HARING-AWARENES S

The LLC replacement policy can influence the amount o f cross
thread sharing in the LLC. If the replacement policy prematurely
evicts the shared blocks before they are accessed by all their
sharers, the amount of sharing can decrease significantly. On the
other hand, if the accesses from the sharers to a shared block are
very far apart, retaining such a block until all the sharers access
the block may, in fact, be suboptimal and hurt performance. As an
example, consider a cache block which is supposed to be accessed
by k distinct sharers in a certain phase of execution. A policy that
is not sharing-aware may cause k private fills of this cache block
in the worst case leading to a zero fraction of shared fills and only
one sharer per fill on average (the private blocks are defined to have
one sharer). On the other hand, depending on the inter-core sharing
distance, a policy that is more sharing-aware may have less than k
fills, some of which are shared fills leading to a non-zero fraction
of shared fills and larger than one sharer per fill on average. The
fraction of shared fills and the average number of distinct sharers
per fill are expected to be good indicators of sharing-awareness of
a policy.

To evaluate the impact of LLC management policies on data
sharing, Figure 5 compares Belady's optimal policy, LRU policy,
two-bit SRRIP policy, two-bit DRRIP policy, SHiP-PC policy, and
SA-Partition policy in terms of the volume of LLC fills partitioned
into shared and private fills normalized to Belady's optimal policy.
The upper and lower panels show the results for a 4 MB LLC
and an 8 MB LLC, respectively. As expected, the data in Figure 5
show that Belady's optimal policy has the lowest number of LLC

4

1.5 tf'J;;:r-:-f"..,.-fo,......,=.---I I--....... III-I

0.5
O ��������HW���������

(a) 4MB LLC

.
� 2.5
� 2 �--�=-� ��h�'�n--l���============��
]1.5 +110 --1 � 1
� 05
z O��,���������'�rn����������� �w��

(b) 8MB LLC

Fig. 5: Number of shared and private LLC fills in the LRU (L),
SRRIP (S), DRRIP (D), SHiP-PC (SH) and SA-Partition (SP) replace
ment policies normalized to the number of LLC fills by Belady's (B)
optimal replacement policy in 4 MB and 8 MB LLCs.

fills (same as LLC misses). The results also show that SHiP-PC is
the best performing among the remaining policies, while LRU is
the worst on both 8 MB and 4 MB LLCs. We also note that on
average the SA-Partition policy suffers from as many LLC misses
as the SRRIP policy, which it uses as the baseline policy (the
original proposal of SA-Partition used LRU as the baseline policy,
which we replace by SRRIP because SRRIP outperforms LRU by a
significant margin). Only streamcluster gains significantly from the
partitioning technique of this policy. The performance of the SA
Partition policy depends on the quality of its heuristic to predict the
shared fills, which we have already discussed. In Section VII, we
show that this heuristic cannot offer acceptable levels of accuracy.

As mentioned before, the sharing-awareness of a replacement
policy is indicated by the fraction of shared fills made by the
policy. A higher fraction of shared fills corresponds to a larger
volume of cross-thread sharing in the LLC. Belady's algorithm
has optimal sharing-awareness because it has knowledge about all
future reuses. On average, for an 8 MB LLC, 21 % of LLC fills
in Belady's policy are shared. This figure is 14% for a 4 MB LLC.
Although the LRU policy on an 8 MB LLC exhibits a larger volume
of shared fills compared to the optimal policy, the number of shared
fills as a fraction of all fills in the LRU policy is much smaller. The
other policies also exhibit significantly lower fraction of shared fills
when compared to Belady's policy.

Another way of quantifying sharing-awareness of an LLC man
agement policy is to measure the average number of distinct sharers
per fill into the LLC. Figure 6 compares various policies in terms
of this metric. For an 8 MB LLC, the average number of sharers per
fill observed by Belady's policy, LRU, SRRIP, DRRIP, SHiP-PC,
and SA-Partition is 1 .48, l.27, l.27, l.24, l.26. and l.23. These
figures for a 4 MB LLC are l.27, l.l7, l.l6, l.l4, l.l4, and l.l2.
As expected, with decreasing LLC capacity the average number
of sharers per fill decreases. We see considerable variability in the
average number of sharers per LLC fill for different policies in
applications such as canneal, dedup and vips. This indicates that
the LLC replacement policy can significantly affect the amount of
data sharing in the LLC. From the figure it is clear that, compared

IIIBelady .lRU IllSRRIP ClDRRIP .SHlp· PC DSP

(a) 4MB LLC

IlIBelady .lRU IlISRRIP iIlDRRIP .SHlp· PC DSP 2.4 ,-----------------------� 2.2 +----=-------- -11----------
Ii 2
� 1.8
'0 1.6 .. 1.4 �1.2 ..: 1

(b) 8MB LLC

Fig. 6: Average number of distinct sharers per LLC fill for various
replacement policies in 4 MB and 8 MB LLCs.

to Belady's policy, the LRU, SRRIP, DRRIP, SHiP-PC, and SA
Partition policies prematurely evict several shared blocks that, if
retained longer, could have enjoyed accesses from more sharers.
This, in turn, could have saved several LLC misses to the shared
blocks. There is a large gap between the sharing-awareness of
the existing LLC replacement policies and the optimal level of
sharing-awareness. The biggest difference between the optimal
policy and the other policies is observed in canneal, dedup, ferret,
and vips. For an 8 MB LLC, the optimal number of distinct sharers
per LLC fill is at least two in these applications. These are also
the applications that exhibit high fractions of shared fills in the
optimal policy (canneal: 40%, dedup: 38%, ferret: 50%, vips: 5 1 %
for 8 MB LLC), as shown in Figure 5 . On the other hand, the
SPLASH-2 applications (fft, ocean, radix) have mostly private
blocks.

V I. S HARING-AWARE REPLACEMENT POLICIES: A

GENERIC DES IGN

The data presented in the last section show that several recently
proposed LLC management policies fall significantly short of the
optimal policy in terms of sharing-awareness. However, these data
do not offer any direction as to how one can introduce sharing
awareness in an existing policy and how much performance ben
efit can come from introducing sharing-awareness. This section
discusses a general approach to designing a sharing-aware policy
on top of an existing baseline and evaluates two oracle policies
to explore the performance potential that can be uncovered by
introducing sharing-awareness in an existing policy.

Consider a baseline LLC management policy P. On top of P, we
design two oracles Gone and Gall, which have differing degrees of
sharing-awareness. The input to the oracles is a description of P
and the usual LLC access trace with some additional annotations
that we discuss below. To generate the annotations, we execute
the LLC access trace in the presence of Belady's algorithm. Each
eviction from the LLC by Belady's algorithm is marked in the
access trace. Since a cache block may have to be filled multiple
times into the LLC, each such fill is defined to start a new optimal
lifetime of the cache block in the LLC and the life lasts until it gets
evicted from the LLC.

5

.lRU Done OlRU Oall .DRRIP Cone mDRRIP Oall .SHIP-PC Cone (JSHlp·PC Oall

(a) 4MB LLC

.lRU Oone DlRU Oall .ORRIP Oone �DRRIP Oall .SHIP·PC Oone C$HIP-PC Oall

(b) 8MB LLC

Fig. 7: Number of LLC misses experienced by the sharing-aware
oracles normalized to the corresponding baseline policies for 4 MB
and 8 MB LLCs.

The oracles digest the annotated LLC access trace while simu
lating the policy P. On every LLC miss that P suffers from, the
oracles consult the annotations to look ahead into the future and
determine the number of distinct cores that access the block until
the end of its current optimal LLC lifetime. If the number of such
cores is more than one, the block is marked as a shared block in the
LLC and its number of sharers is also recorded in the extended tag.
In Gone, a cache block remains marked as shared in the LLC until
it has seen the first sharing access (an access from a core different
from the one that filled the block) from any of the expected sharers.
In Gall, a cache block remains marked as shared in the LLC until
it has seen at least one access from each of its sharers. Only cache
blocks that are not marked as shared are considered by policy P
when choosing a replacement victim from an LLC set. Therefore,
the oracles augment P with the optimal sharing information and
protect the cache blocks that become shared in the future, thereby
increasing data sharing in the LLC.

Figure 7 shows the number of LLC misses of the two oracles
working with baseline LRU, DRRIP, and SHiP-PC normalized to
each of the baseline policies. For an 8 MB LLC with the LRU
policy, the Gone oracle saves up to 27% LLC misses (vips) and
6% LLC misses on average compared to the baseline LRU policy.
These figures for the Gall oracle are 4 1 % (maximum) and 10% (av
erage), respectively. Some of the top gainers of Gall include
canneal (24%), ferret (21 %), ray trace (1 6%), and vips (4 1 %). With
the DRRIP policy on an 8 MB LLC, the Gone oracle saves up to
20% LLC misses (vips) and 6% LLC misses on average compared
to the baseline DRRIP policy. These figures for the Gall oracle are
24% (maximum) and 8% (average), respectively. Relative to the
baseline SHiP-PC policy, the Gone and Gall oracles save 3% and
5% LLC misses on average for the 8 MB LLC. The biggest gainer
for Gone on SHiP-PC is ferret (9% LLC miss saving) and for Gall
on SHiP-PC it is vips (1 8 % LLC miss saving). Overall, the Gall
oracle is more effective than the Gone oracle in applications that
have more intense sharing (see Figures 5 and 6). The trends are
similar for a 4 MB LLC, but the oracles are less effective due to
the smaller-capacity LLC, as expected.

Fig. 8: Distribution of the shared fills to the LLC in Belady's optimal
replacement policy categorized based on the number of sharers for
4 MB and 8 MB LLCs.

To further understand the differing effectiveness of the two
oracles, Figure 8 shows the distribution of the shared LLC fills
experienced by Belady's optimal policy in terms of the number
of distinct sharers. For each application, we show the data for
4 MB (left bar) and 8 MB (right bar) LLCs. On average, 71 % and
63 % of the shared fills observe only two sharers for 4 MB and
8 MB LLCs, respectively. These fills can be covered by the Done
oracle. Further, the Done oracle also satisfies at least one cross
thread LLC reuse of the shared fills having more than two sharers.
The applications that gain most from the Dall oracle have high
fractions of shared fills observing more than two sharers. These are
canneal, dedup, ferret, and vips. Although art has a high fraction of
shared fills with more than two sharers, it does not gain much from
the Dall oracle because this application has a small overall volume
of shared fills (4% of all fills in 8 MB LLC), as shown in Figure 5.

These oracles offer important insight into how sharing
awareness can be introduced in an LLC management policy. The
oracles, as designed, need assistance from Belady's optimal pol
icy. Realistic implementations of the oracles need two pieces of
information at the time of filling a block into the LLC. They need
to predict if the block being filled is likely to be shared during
its optimal lifetime in the LLC. If the block is inferred shared,
the sharing-aware policies need to have an estimate of the number
of distinct sharers for this block. In the next section, we explore
the feasibility of implementing a predictor that infers, at the time
of filling a block, if the block is going to be shared. If we can
design such a predictor with high enough accuracy, we can easily
implement the Done oracle, which would retain the inferred shared
blocks until they see their first sharing access. Mispredictions
are costly because predicting an actually private block as shared
can occupy cache space for an unnecessarily long time and may
degrade performance. One way to handle such mispredictions is to
have a time-out mechanism that would unmark a predicted shared
block if it fails to see a sharing access within the time-out period.

VII. C HALLENGES IN REALIZING S HARING-AWARE

REPLACEMENT POLICIES

In this section, we analyze how data is shared and utilized
in the applications, and discuss the implications of these charac
teristics on the design of sharing-aware replacement policies. In
these characterizations, we use Belady's optimal policy for LLC
replacement so that our conclusions can highlight the true nature
of the characteristics and are free of any implementation artifacts.

A. Data Sharing in Multi-threaded Applications

The amount and nature of data sharing in the LLC in multi
threaded applications are dependent not only on the application
characteristics, but also on the capacity of the LLC and the LLC
management policy. If the LLC cannot accommodate the entire

6

• RO Shared • RW Shared
P 8 4

O'�iI��� 0.6 �.I ---.J,,bL,WI-----a--
0.4 �
0.2 �

o

Fig. 9: Fraction of cache blocks shared at program level (P) and
during at least one LLC lifetime for 4 MB and 8 MB LLCs with
Belady's optimal replacement policy.

shared working set of an application, it can hurt cross-thread
sharing observed in the LLC. We refer to the amount of sharing
observed in an application for a given LLC configuration as its
LLC lifetime sharing. A cache block is said to be shared during its
LLC lifetime if it is accessed by more than one core while it resides
in the LLC. A cache block can have multiple lifetimes depending
on how many times it is filled into the LLC. A shared cache block
always refers to a cache block that is shared during at least one of
its LLC lifetimes. While the LLC lifetime sharing of an application
is dependent on the LLC configuration, the maximum possible
sharing in an application occurs when there is no constraint on the
LLC capacity and it can accommodate the entire shared working
set. We refer to this theoretical limit on sharing that occurs with
an infinite LLC as program-level sharing. A cache block is shared
at the program level if it is accessed by more than one core, even
across different LLC lifetimes, over the course of execution of the
entire application. Program-level sharing is purely an application
characteristic and is unaffected by the LLC configuration.

Figure 9 compares the fraction of memory blocks that are shared
during at least one LLC lifetime running Belady's optimal policy
with program-level sharing. For each bar, each block is classified as
read-only shared or read-write shared. On average, although 57%
of the memory blocks are shared at the program level in these
applications, only 37% of them are shared in an 8 MB LLC and
3 1 % in a 4 MB LLC even with the optimal replacement policy.
These results show that the inter-core sharing distances of the
shared memory blocks in these applications are large and only
a fraction of these can be captured by the optimal policy. The
sharing distances that are beyond the LLC reach lead to premature
eviction from the LLC before all the accesses from the sharing
cores take place. In fact, these blocks appear to be private even
to the optimal replacement policy due to LLC capacity constraints.
The largest differences between program-level sharing and LLC
lifetime sharing are exhibited by canneal, ray trace, radix, and fft.
We examine ferret and canneal in greater detail.

Ferret uses a database that is shared among all the threads in
the program and is queried throughout the course of execution of
the application. Since the threads do not coordinate their queries,
accesses by different threads can be widely spread apart. As a re
sult, while an entry from the database can be accessed by different
cores thereby experiencing program-level sharing, the cache block
holding the entry may never get shared during any LLC lifetime.

Canneal is another application where the uses of the shared
data in the LLC by different threads are widely spread apart
leading to a large fraction of the cache blocks being shared at
the program-level, but relatively few blocks shared during an
LLC lifetime. Canneal uses simulated annealing to optimize the
routing cost for a chip design. The program has a large shared
data structure that is accessed by all the threads in the program.

liD Private !'l RO Shared • RW Shared

Fig. 1 0: Distribution of the LLC hits to different categories of cache
blocks for 4 MB and 8 MB LLCs under Belady's optimal replacement
policy.

Listing 1 shows the main loop of the program which is parallelized.
Each thread randomly chooses two different elements, a and b,
from _net 1 i stand performs some computations in the function
calculate_delta_routin9_cost using the two elements
as inputs. If an element is accessed by two different threads while
cached in the LLC, it becomes shared during an LLC lifetime.
Since the elements are chosen at random, accesses by different
threads can happen at irregular intervals. The random nature of
the accesses also results in some elements from _net 1 i s t being
shared frequently while others never get shared. It also results in
a highly irregular sharing pattern where a cache block is shared
during some LLC lifetimes but not during others.

netlist_elem *a, *bi

long a_id, b_id;

Rng rng; Iistore of randomness

for (i = 0; i < _ffioves_per_thread_tempi i++) {
//get new element b different from a
a = b;

a_id = b_id;

b = _netlist->get_random_element(&b_id, a_id, &rng);

routin9_cost_t delta_cost =

calculate_delta_routin9_cost(a,b);

Listing 1 : Canneal main loop

Given the sharing behavior of the multi-threaded applications,
a simple heuristic to decide if a block will be shared during its
residency in the LLC, like the one used by SA-Partition, will be
ineffective. Recall that SA-Partition identifies a cache block as
shared if it has been shared in the past or it is filled by a core that
is different from the core which filled the block during its previous
LLC lifetime. However, if the accesses by the two cores are spread
wide apart, such a cache block will never be shared during an LLC
lifetime. Essentially, SA-Partition tries to capture program-level
sharing, which may significantly depart from the optimal sharing
behavior for a particular LLC configuration, as shown in Figure 9.

Returning to our discussion on Figure 9, we find that the
applications show varying degrees of read-only and read-write
sharing. While canneal, ray trace, and art have mostly read-only
shared data, dedup, freqmine, stream cluster, equake, radix, fft, and
ocean have mostly read-write shared data. Both types of sharing
are experienced by ferret, fluidanimate, and vips.

A recent proposal (CSHARP) [3 1] argues that offering extra
protection to the dirty shared blocks can improve the LLC perfor
mance. To understand the benefits of such a technique, Figure 10
explores the composition of the LLC hits observed by Belady's
optimal policy. A shared fill that enjoys only read hits in the
LLC is classified as a read-only shared fill. A read-write shared
fill is defined similarly. All LLC hits to a private-reuse fill are
counted as private. All LLC hits to a read-only (read-write) shared

7

fill are counted as read-only shared (read-write shared). For each
application, the left bar shows the data for a 4 MB LLC and the
right bar for an 8 MB LLC. In general, most hits to the shared
blocks are contributed by the read-only shared blocks except in
dedup and, to some extent, in vips. On average, in an 8 MB LLC,
47% and 9% of the LLC hits with Belady's optimal policy come
from the read-only and read-write shared blocks, respectively.
These figures for a 4 MB LLC are 44% and 7%, respectively. In
summary, the read-write shared blocks are not a major source of
the shared hits in the LLC even for the optimal LLC replacement
policy and hence, a policy like CSHARP may not be effective for
this set of applications. Instead, biasing the sharing-awareness of
a policy toward the read-only shared blocks may be beneficial, but
separating such blocks from the others at the time the LLC fill takes
place is not easy. We explore the general problem of identifying the
shared fills next.

B. Predictability of Sharing in Multi-threaded Applications

In Section VI we concluded that a realistic implementation of a
sharing-aware replacement policy would require a highly accurate
predictor that infers, at the time a block is filled into the LLC,
whether the block is likely to be shared during its residency in the
LLC. In this section, we explore the feasibility of designing such
a predictor. Recall that each fill into the LLC uniquely defines one
LLC lifetime of a memory block and the life lasts until the block
is evicted from the LLC. To predict the nature (shared or private)
of each life of a memory block, we first represent the behavior of
the block as a binary string of two symbols, namely, P for private
and S for shared. This allows us to refer to the sharing behavior
of a memory block as a sharing history, similar to the branch
history that a branch instruction possesses. A memory block that
is always private or always shared has a unary history string, while
a block that is shared in only a subset of its lifetimes presents a
more challenging task of predicting the nature of its next lifetime
given its binary history string. In the following, we focus only on
the shared blocks (a block that is shared in at least one of its LLC
lifetimes) and explore the feasibility of designing a predictor that
predicts the nature (private or shared) of the next LLC lifetime of
the block, given a history window of the last w LLC lifetimes of
the block. Following the branch prediction terminology, this can
be termed a local history-based predictor.

We start our analysis by exploring how regular the sharing
history of a shared block is. While discussing the main loop of
Canneal, we have already pointed out that a shared cache block in
this application may not be shared in each of its LLC lifetimes.
Figure 1 1 shows the distribution of the shared cache blocks based
on the fraction of the LLC lifetimes during which they are shared.
For each application, the left bar is for a 4 MB LLC, while the
right bar is for an 8 MB LLC, both running Belady's optimal
policy. Each bar shows the fraction of shared blocks that are shared
in less than 50%, 50%-90%, and more than 90% of each of the
blocks ' LLC lifetimes. For example, a shared block that is shared
in forty LLC lifetimes out of its total of hundred lifetimes would
be included in the first of the three categories. On average, for an
8 MB LLC, about 60% of the shared blocks are shared in more than
50% of their LLC lifetimes and only one-third of the shared blocks
are shared in more than 90% of their LLC lifetimes. For a 4 MB
LLC, these figures are 44% and 14%, respectively. It is clear that
a shared block is only sparsely shared across its lifetimes and the
sparseness only increases as the LLC capacity decreases, which
is an expected behavior. Further, there is significant variability
across the applications. On an 8 MB LLC, fluidanimate, equake,

[J < 50% of LLC l ifetimes 1!l 50% • 90% of LLC lifetimes • > 90% of LLC lifetimes

Fig. 1 1 : Distribution of the shared blocks based on LLC lifetime
sharing for 4 MB and 8 MB LLCs with Belady's optimal replacement
policy.

and art exhibit very dense sharing with at least 60% shared blocks
being shared in more than 90% of their LLC lifetimes. On the
other hand, canneal, dedup, streamcluster, radix, fft, and ocean
show very sparse sharing with at least 50% shared blocks being
shared in less than 50% of their LLC lifetimes. From these data
we conclude that the sharing history of the shared blocks in most
of the applications is expected to be irregular and sparse. These
results further emphasize that a simple heuristic to predict the
nature (private or shared) of a fill, like the one used in SA
Partition, will be ineffective for these applications. Recall that in
SA-Partition, once a cache block is identified as shared during a
particular LLC lifetime, all subsequent LLC lifetimes of that block
are predicted to be shared. But the results in Figure 1 1 show that
such a heuristic is highly inaccurate. In the rest of the analysis,
we focus only on the PARSEC applications, as the remaining
applications have low volumes of LLC lifetime sharing (Figure 9)
and almost no improvement with the oracles (Figure 7).

VI .,.
u 0 1 :;; ." 0.8
� 0.6 IV J:. 0.4 VI

'0 0.2
c 0
.2
1::
l! ...

1m < 5 l ifetimes � 5 · 9 lifetimes • > 9 l ifetimes

"::;/10 1 dd i'i' <t oo ""'"Icol ""'"1001 <t oo : 1: 1
ru n;

+0<1 1 � �
,,-1 10...1

.. .. ::J ::J E E c: c: t: t:: c. c.
C: C: "0 "0 � � 'E 'E � � � � ';; 0;;
c: c: "' .. 2 .!! ;:. ;:. [9 [9 "0 "0 "0 "0 CT CT

� � � � ..= "::

""'"
1
001

� �

Fig. 1 2: Distribution of the shared cache blocks based on the number
of LLC lifetimes for 4 MB and 8 MB LLCs with Belady's optimal
replacement policy.

Figure 1 2 further quantifies the distribution of the number of
LLC lifetimes across the shared blocks. On average, for an 8 MB
LLC, 64% of the shared blocks experience less than five LLC
lifetimes, while only 1 8 % of the shared block experience more than
nine LLC lifetimes. As expected, for a smaller LLC, the shared
blocks experience larger numbers of LLC lifetimes with 43%
of the shared blocks having more than nine LLC lifetimes. The
distribution of the number of LLC lifetimes is directly correlated
to the shared data working set size of an application and canneal,
ferret, and streamcluster show a higher fraction of shared blocks
experiencing larger numbers of LLC lifetimes on an 8 MB LLC.
On a 4 MB LLC, canneal, ferret, fluidanimate, streamcluster, and
vips experience larger numbers of LLC lifetimes for most of the
shared blocks. On the other hand, dedup, freqrnine, and ray trace
have relatively small shared working sets and show larger fraction
of smaller LLC lifetime counts.

Our history-based sharing behavior predictor uses a history of
length w bits. We first collect the entire sharing history HA of each

8

1liI 0.5 · 0.6 � 0.6 · 0.9 • > 0.9

(a) History window size four bits

IJII 0.5 · 0.6 I:'l 0.6 - 0.9 • > 0.9

(b) History window size two bits

Fig. 1 3 : Distribution of the shared addresses based on the sharing
predictability index with history window sizes of four and two bits
for 4MB and 8MB LLC

shared block address A under Belady's optimal policy. For each
shared block address A, we move a sliding window of length w
over the entire history H A. For each history pattern h of length w
bits encountered in the process (subset of the possible 2w patterns),
we record the number of times the block's next LLC lifetime is
private and the number of times the block's next lifetime is shared.
Let these counts be Ph and Sh , respectively. Thus, given a history
pattern h of length w bits, the probability that the block's next
LLC lifetime is shared is Sh/ (Ph + Sh) . The pattern h is a good
indicator of the sharing behavior of the next LLC lifetime if the
aforementioned probability is either close to one (shared lifetime)
or close to zero (private lifetime). We define the predictability
index of a shared block at address A for w-bit history as

PA (W) = _1_ L ffiaJ«(Ph , Sh)
, Nw h Ph + sh (1)

where the sum i s over all w-bit history patterns h captured by the
sliding window and Nw is the number of such distinct patterns.
P A lies between 0.5 and one and indicates how accurately we can
predict the sharing behavior of a shared block at address A, given
the recently seen w LLC lifetimes of the block. If PA is close to
one, such a predictor can predict with high accuracy the nature of
the current LLC lifetime of the block when it is filled into the LLC.
On the other hand, a value close to 0.5 indicates a poor prediction
accuracy. To be able to cover most of the shared cache blocks from
most of the applications, we use history lengths less than five (see
Figure 1 2). In particular, we explore history lengths of four and
two.

Figure 1 3 shows the distribution of the shared blocks based
on the computed predictability. For each application, the left bar
shows the results for a 4 MB LLC and the right bar for an 8 MB
LLC. On average, for a four-bit history on an 8 MB LLC, only 26%
of the shared blocks show a predictability value of more than 0.9.
On a 4 MB LLC, this figure improves to 42%. This is expected be-

cause most shared blocks on a 4 MB LLC spend more of their LLC
lifetimes in private mode leading to a lower-entropy history and
better predictability compared to an 8 MB LLC. The predictability,
in general, improves with a two-bit history (34% and 5 1 % of the
shared blocks have more than 0.9 predictability on 8 MB and
4 MB LLCs). A short and more recent two-bit history offers higher
accuracy in dedup, ftuidanimate, freqmine, and ray trace. However,
for the applications with intense sharing such as canneal, ferret,
streamcluster, and vips, a longer history helps more by pushing
more shared blocks into the upper 0.9 predictability group for a
four-bit history. These are some of the applications that show large
improvements with the oracles (Figure 7). In general, we find that
none of the applications (except ftuidanimate and streamcluster on
a 4 MB LLC) enjoys a high sharing predictability.

Instead of designing a predictor that learns the sharing pattern
for each individual LLC block, it is possible to learn this pattern
for each program counter (PC) of the memory access instructions
that trigger LLC fills. Such a predictor, on encountering a fill from a
particular PC, would predict the nature of the current LLC lifetime
of the block being filled based on the sharing history exhibited by
the blocks already filled by this Pc. We next conduct the same
predictability study for each PC that brings at least one block into
the LLC. Each such PC triggers a sequence of fills into the LLC
over the entire execution of the application. Each such fill leads
to a private or shared LLC lifetime of the block being filled. Thus
we can attach a sharing history with each PC in the same way as
we attach a sharing history with a shared block. Therefore, we can
define a predictability index Ppc for each fill PC in the same way
as shown in Formula (1). Figure 14 shows the distribution of the
fill PCs based on their predictability index. The trends are very
similar to the address-based predictability study. On average, for
a history length of four bits on an 8 MB LLC, 29% of the fill
PCs show a predictability of more than 0.9, while for a two-bit
history, this figure improves to 32%. For dedup and freqmine, the
fill PC-based predictability is much better than the address-based
predictability (compare the percentages in the upper 0.9 category),
while for the other applications, the address-based predictability
is higher. Overall, the introduction of the fill PC does not help
improve the sharing predictability for this set of applications. In
general, a particular fill PC brings a large number of memory
blocks into the LLC. If all these blocks do not exhibit similar LLC
lifetime sharing history, the sharing history irregularity of each of
these blocks only adds up and makes the mixed sharing behavior of
all LLC blocks filled by a particular PC even more unpredictable.

We evaluate the effectiveness of address and PC-based sharing
behavior prediction by augmenting the DRRIP and SHiP-PC poli
cies with a sharing behavior predictor. The predictor identifies if an
LLC fill brings a cache block that will be shared during its current
LLC lifetime. Once identified, such a cache block is inserted at
the highest priority in the LLC (RRPV of 0 for the DRRIP and
SHiP-PC policies). The sharing behavior predictor is implemented
as a 1 6K-entry table which is indexed using a 14-bit PC or address
hash similar to SHiP-PC. Each entry in the table maintains a 2-
bit saturating counter, which records the sharing behavior history.
On every LLC eviction, the history counter is incremented if the
evicted cache block is shared, else it is decremented. On an LLC
fill, the predictor table is consulted with the fill PC or fill address.
If the indexed 2-bit counter has a value of three, the fill is predicted
to be shared and inserted in the LLC with the highest priority.
Otherwise the underlying replacement policy (DRRIP or SHiP
PC) decides the insertion priority. Our evaluations show negligible
improvement with such a sharing behavior predictor for both the

9

l2
_ 1
� 0.8
:::I 0.6
'0 0.4 � o.�
E ...

a
... 1
ii: 0,8
� 0,6
'0 0.4
I: 0.2

IiJ 0.5 - 0.6 � 0.6 - 0.9 • > 0.9

:: I� I dd : 1: 1 :/:1 :I� I ; I� I � co 1-1 ,-1 "' ''' " " � � E E c: c: � t;; "' '''
C: C: '0 '0 c: c: 'E 'E �� "E "E c: c: "' ''' ..E:! � "' '''
e e '0 '0 '0 '0 C' C' tn t;; "" "" � � � �

(a) History window size four bits

Ill! 0,5 - 0,6 � 0.6 - 0,9 • > 0.9

� 0 -H'-"'--'I'-+'r-I'-'I'-"r-fWI"+-H'+-::: I� I "':1'/101 : 1: 1 � co .:1'/101 ¢Iool � I� I E ... "' ''' c. c.
... 1 ..,1 "' ''' "' ''' "' ''' " " � � E E c: c: .., .., ti t;;

C: C: '0 '0 c: c: 'E 'E i� "E "E c: c: "' ''' � � "' '''
e e '0 '0 '0 '0 C' C' ti t;; "" "" � � � �

(b) History window size two bits

-: 1': 1 ¢Icol
c. c. � � ':; ':;: o{ o{

�� .'::;/10 1 (!) (!) � � ':S ':;:

Fig, 1 4: Distribution of the LLC fill PCs based on the sharing
predictability index for 4 MB and 8 MB LLCs with Belady's optimal
replacement policy.

DRRIP and SHiP-PC policies and we attribute this to the low
predictability of the sharing patterns.

Overall, our analysis indicates that the sharing behavior of
multi-threaded applications does not correlate well with the sharing
history of the shared block addresses or LLC fill PCs. A sharing
aware policy must explore beyond these commonly used tech
niques to predict the sharing behavior of the LLC blocks.

V III. S UMMARY

In this paper we investigate the need for sharing-aware LLC
replacement policies and their impact on the LLC performance of
multi-threaded applications. We show that the shared LLC blocks
contribute more to the LLC hits than the private LLC blocks in
multi-threaded applications. We show that the LLC replacement
policies significantly affect cross-thread data sharing in the LLC
and that introducing sharing-awareness can significantly improve
the performance of a range of LLC replacement policies. We
present a thorough analysis of how data is shared and utilized in the
LLC in multi-threaded applications and highlight the implications
of these characteristics on the design of sharing-aware LLC re
placement policies. We propose a generic approach to incorporate
sharing-awareness in the existing LLC replacement policies. At the
heart of this generic design is a sharing predictor that, on an LLC
fill, predicts if the currently filled block is likely to be shared during
its residency in the LLC. Based on the characteristics of the multi
threaded applications, we explore two designs of such a sharing
predictor and compute the predictability limits of these designs as
a function of the history length. Based on these studies we conclude
that the address-based and fill PC-based sharing predictors do not
offer adequate levels of accuracy and there remains a need for
better architectural and high-level program semantics features for
designing such predictors with high accuracy.

IX. ACKNOWLED GEMENTS

We would like to thank Jayesh Gaur, Nithiyanandan Bashyam,
Sreenivas Subramoney and Antonia Zhai for their feedback during
this work. This work is supported in part by National Science
Foundation grants CCF-09 1 6583 and CPS-093 193 1 .

REFERENCES

[1] V. Aslot et al . SPEComp: A New Benchmark Suite for Measuring
Parallel Computer Performance. In Proceedings of the International
Workshop on OpenMP Applications and Tools, pages 1-10, July 200 1 .

[2] N . Barrow-Williams, C . Fensch, and S . W. Moore. A Communication
Characterisation of SPLASH-2 and PARSEC. In Proceedings of the

International Symposium on Workload Characterization, pages 86-97,
October 2009.

[3] L. A. Belady. A Study of Replacement Algorithms for a Virtual-storage
Computer. In IBM Systems Journal, 5(2): 78-10 1 , 1966.

[4] M. Bhadauria, V. M. Weaver, and S . A. McKee. Understanding PARSEC
Performance on Contemporary CMPs. In Proceedings of the Interna
tional Symposium on Workload Characterization, pages 98-107, October
2009.

[5] C. Bienia et al. The PARSEC Benchmark Suite: Characterization and
Architectural Implications . In Proceedings of the 1 7th International
Conference on Parallel Architecture and Compilation Techniques, pages
72-8 1 , October 2008.

[6] C. Bienia, S . Kumar, and K. Li. PARSEC vs. SPLASH-2: A Quanti
tative Comparison of Two Multithreaded Benchmark Suites on Chip
Multiprocessors . In Proceedings of the International Symposium on
Workload Characterization. pages 47-56. September 2008.

[7] M. Chaudhuri et al . Introducing Hierarchy-awareness in Replacement
and Bypass Algorithms for Last-level Caches. In Proceedings of the
2i st International Conference on Parallel Architecture and Compilation

Techniques, pages 293-304, September 2012 .
[8] M. Chaudhuri. Pseudo-LIFO: The Foundation of a New Family of

Replacement Policies for Last-level Caches. In Proceedings of the
42nd International Symposium on Microarchitecture, pages 40 1-412,
December 2009.

[9] y. Chen et al. Efficient Shared Cache Management through Sharing
aware Replacement and Streaming-aware Insertion Policy. In Proceed

ings of the 23rd International Symposium on Parallel and Distributed
Processing. May 2009.

[10] N. Duong et al. Improving Cache Management Policies Using Dynamic
Reuse Distances. In Proceedings of the 45th International Symposium
on Microarchitecture. pages 389-400, December 20 12 .

[I I] J. Gaur, M. Chaudhuri, and S . Subramoney. Bypass and Insertion
Algorithms for Exclusive Last-level Caches. In Proceedings of the 38th
International Symposium on Computer Architecture, pages 8 1-92, June
20 1 1 .

[12] Z . Hu. S . Kaxiras, and M . Martonosi. Timekeeping in the Memory
System: Predicting and Optimizing Memory Behavior. In Proceedings
of the 29th International Symposium on Computer Architecture, pages
209-220, May 2002.

[13] A. Jaleel et al. High Performance Cache Replacement using Re-reference
Interval Prediction (RRIP). In Proceedings of the 37th International
Symposium on Computer Architecture. pages 60-7 1 , June 20 10 .

[14] A. JaJeel e t al. Adaptive Insertion Policies for Managing Shared Caches.
In Proceedings of the i 7th International Conference on Parallel Archi
tecture and Compilation Techniques, pages 208-2 19 . October 2008.

[1 5] A. Jaleel, M. Mattina, and B . Jacob. Last-level Cache (LLC) Perfor
mance of Data Mining Workloads on a CMP - A Case Study of Parallel
Bioinformatics Workloads. In Proceedings of the 12th International
Symposium on High-peiformance Computer Architecture, pages 88-98,
February 2006.

[16] M. T. Kandemir et al. Optimizing Shared Cache Behavior of Chip
Multiprocessors . In Proceedings of the 42nd International Symposium

on Microarchitecture. pages 505-5 16 , December 2009 .
[17] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache Replacement Based

on Reuse Distance Prediction. In Proceedings of the 25th international
Conference on Computer Design. pages 245-250, October 2007 .

[1 8] S. Khan, Y. Tian, and D. A. Jimenez. Dead Block Replacement and By
pass with a Sampling Predictor. In Proceedings of the 43rd international
Symposium on Microarchitecture, pages 175-1 86, December 20 10 .

10

[19] S . Khan et al. Using Dead Blocks as a Virtual Victim Cache. In Pro

ceedings of the i9th International Conference on Parallel Architectures
and Compilation Techniques, pages 489-500, September 2010.

[20] M. Kharbutli and Y. Solihin. Counter-based Cache Replacement and
Bypassing Algorithms . In IEEE Transactions on Computers, 57(4) : 433-
447. April 2008.

[2 1] A. J. KleinOsowski and D. 1. Lilja. MinneSPEC: A New SPEC Bench
mark Workload for Simulation-Based Computer Architecture Research.
In Computer Architecture Letters. 1(1) , January 2002 .

[22] A-C. Lai, C. Fide. and B. Falsafi. Dead-block Prediction & Dead
block Correlating Prefetchers. In Proceedings of the 28th international

Symposium on Computer Architecture, pages 144-154, June/July 200 1 .
[23] W. Li e t al. Understanding the Memory Performance o f Data-Mining

Workloads on Small, Medium, and Large-Scale CMPs Using Hardware
Software Co-simulation. In Proceedings of the International Symposium

on Peiformance Analysis of Systems and Software, pages 35-43, April
2007 .

[24] J. Lin et al. Understanding the Memory Behavior of Emerging Multi
core Workloads. In Proceedings of the Eighth International Symposium
on Parallel and Distributed Computing, pages 1 53-160, June 2009.

[25] H. Liu et al. Cache Bursts : A New Approach for Eliminating Dead
Blocks and Increasing Cache Efficiency. In Proceedings of the 4ist In
ternational Symposium on Microarchitecture, pages 222-233, November
2008.

[26] R. Manikantan, K. Rajan, and R. Govindarajan. Probabilistic Shared
Cache Management (PriSM). In Proceedings of the 39th international

Symposium on Computer Architecture, pages 428-439, June 20 12 .
[27] R. Manikantan, K. Rajan, and R. Govindarajan. NUcache: An Efficient

Multicore Cache Organization Based on Next-Use Distance. In Proceed
ings of the i 7th IEEE international Symposium on High-peiformance

Computer Architecture, pages 243-253, February 201 1 .
[28] R . L . Mattson et al. Evaluation Techniques for Storage Hierarchies. In

IBM Systems Journal, 9(2): 78-1 17 , 1970.
[29] V. Mekkat et al . Performance Characterization of Data Mining Bench

marks. In Proceedings of the 20iO Workshop on Interaction between
Compilers and Computer Architecture, March 20 10 .

[30] R. Natarajan et al. Effectiveness Of Compiler-Directed Prefetching
on Data Mining Benchmarks. In Journal of Circuits, Systems and
Computers, 2(21) , April 2012 .

[3 1] B . Panda and S . Balachandran. CSHARP: Coherence and Sharing Aware
Cache Replacement Policies for Parallel Applications . In Proceedings of

the 24th International Symposium on Computer Architecture and High

Performance Computing, pages 252-259, October 2012.
[32] M. K. Qureshi et al . Adaptive Insertion Policies for High Performance

Caching. In Proceedings of the 34th International Symposium on Com

puter Architecture, pages 38 1-39 1 , June 2007 .
[33] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches. In Proceedings of the 39th International Symposium
on Microarchitecture, pages 423-432, December 2006.

[34] K. Rajan and R. Govindarajan. Emulating Optimal Replacement with a
Shepherd Cache. In Proceedings of the 40th International Symposium

on Microarchitecture, pages 445-454, December 2007 .
[35] D. Sanchez and C. Kozyrakis . Vantage: Scalable and Efficient Fine-grain

Cache Partitioning. In Proceedings of the 38th international Symposium
on Computer Architecture, pages 57-68, June 201 1 .

[36] D. Sanchez and C . Kozyrakis . The ZCache: Decoupling Ways and
Associativity. In Proceedings of the 43rd International Symposium on

Microarchitecture, pages 1 87-198 , December 20 10 .
[37] R. Ubal e t al. Multi2Sim: A Simulation Framework for CPU-GPU Com

puting. In Proceedings of the 21st International Conference on Parallel

Architecture and Compilation Techniques, pages 335-344, September
2012 .

[38] S . C . Woo et al. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proceedings of the 22nd Interna

tional Symposium on Computer Architecture, pages 24-36, June 1995.
[39] C-J. Wu et al . SHiP: Signature-Based Hit Predictor for High Perfor

mance Caching. In Proceedings of the 44th International Symposium on
Microarchitecture, pages 430-44 1 , December 201 1 .

[40] Y. Xie and G . H . Loh. PIPP: Promotion/Insertion Pseudo-partitioning
of Multi-core Shared Caches. In Proceedings of the 36th International
Symposium on Computer Architecture, pages 174-1 83, June 2009.

